Goto

Collaborating Authors

 Girella, Federico


Leveraging Latent Diffusion Models for Training-Free In-Distribution Data Augmentation for Surface Defect Detection

arXiv.org Artificial Intelligence

Defect detection is the task of identifying defects in production samples. Usually, defect detection classifiers are trained on ground-truth data formed by normal samples (negative data) and samples with defects (positive data), where the latter are consistently fewer than normal samples. State-of-the-art data augmentation procedures add synthetic defect data by superimposing artifacts to normal samples to mitigate problems related to unbalanced training data. These techniques often produce out-of-distribution images, resulting in systems that learn what is not a normal sample but cannot accurately identify what a defect looks like. In this work, we introduce DIAG, a training-free Diffusion-based In-distribution Anomaly Generation pipeline for data augmentation. Unlike conventional image generation techniques, we implement a human-in-the-loop pipeline, where domain experts provide multimodal guidance to the model through text descriptions and region localization of the possible anomalies. This strategic shift enhances the interpretability of results and fosters a more robust human feedback loop, facilitating iterative improvements of the generated outputs. Remarkably, our approach operates in a zero-shot manner, avoiding time-consuming fine-tuning procedures while achieving superior performance. We demonstrate the efficacy and versatility of DIAG with respect to state-of-the-art data augmentation approaches on the challenging KSDD2 dataset, with an improvement in AP of approximately 18% when positive samples are available and 28% when they are missing. The source code is available at https://github.com/intelligolabs/DIAG.


Diffusion-based Image Generation for In-distribution Data Augmentation in Surface Defect Detection

arXiv.org Artificial Intelligence

In this study, we show that diffusion models can be used in industrial scenarios to improve the data augmentation procedure in the context of surface defect detection. In general, defect detection classifiers are trained on ground-truth data formed by normal samples (negative data) and samples with defects (positive data), where the latter are consistently fewer than normal samples. For these reasons, state-of-the-art data augmentation procedures add synthetic defect data by superimposing artifacts to normal samples. This leads to out-of-distribution augmented data so that the classification system learns what is not a normal sample but does not know what a defect really is. We show that diffusion models overcome this situation, providing more realistic in-distribution defects so that the model can learn the defect's genuine appearance. We propose a novel approach for data augmentation that mixes out-of-distribution with in-distribution samples, which we call In&Out. The approach can deal with two data augmentation setups: i) when no defects are available (zero-shot data augmentation) and ii) when defects are available, which can be in a small number (few-shot) or a large one (full-shot). We focus the experimental part on the most challenging benchmark in the state-of-the-art, i.e., the Kolektor Surface-Defect Dataset 2, defining the new state-of-the-art classification AP score under weak supervision of .782. The code is available at https://github.com/intelligolabs/in_and_out.


Neuro-symbolic Empowered Denoising Diffusion Probabilistic Models for Real-time Anomaly Detection in Industry 4.0

arXiv.org Artificial Intelligence

Industry 4.0 involves the integration of digital technologies, such as IoT, Big Data, and AI, into manufacturing and industrial processes to increase efficiency and productivity. As these technologies become more interconnected and interdependent, Industry 4.0 systems become more complex, which brings the difficulty of identifying and stopping anomalies that may cause disturbances in the manufacturing process. This paper aims to propose a diffusion-based model for real-time anomaly prediction in Industry 4.0 processes. Using a neuro-symbolic approach, we integrate industrial ontologies in the model, thereby adding formal knowledge on smart manufacturing. Finally, we propose a simple yet effective way of distilling diffusion models through Random Fourier Features for deployment on an embedded system for direct integration into the manufacturing process. To the best of our knowledge, this approach has never been explored before.