Goto

Collaborating Authors

 Gili, Kaitlin


Using machine learning to measure evidence of students' sensemaking in physics courses

arXiv.org Artificial Intelligence

Teaching and instruction in undergraduate physics courses has largely relied on problem-solving as the standard method to measure student performance [1-6]. Common practice is for "real-time" performance to be measured via multiple-choice or single-solution problems, where canonically correct answers determine the student's knowledge of the core material. Accuracy scores across assignments and examinations, typically coupled with letter grades, act as signals of progress throughout the course as well as final verdicts of student success. While engaging in problem-solving is a useful experience for students in a physics classroom, using the problem solution as a measure of student learning assumes a direct correlation that may not always hold. Problem-solving accuracy as a measurand assumes that students will engage in a learning process involving the core material to obtain the problem solution. Often times, there are alternative strategies for obtaining a problem solution such as rote-memorization of the rules or procedures required for solving similar problem types [7]. In this scenario, students would score very high on exams that contain these problem types; however given a previously unseen problem structure where the same core material is to be applied, the students would struggle. Here, a risk of using problem-solving accuracy as the predominant metric is an inflated sense of confidence in both the instructor and the student that the core material has been learned. It could also pose a risk for confounding variables in research studies that aim to investigate how instructional techniques influence student learning [8-12].


Do Quantum Circuit Born Machines Generalize?

arXiv.org Artificial Intelligence

In recent proposals of quantum circuit models for generative tasks, the discussion about their performance has been limited to their ability to reproduce a known target distribution. For example, expressive model families such as Quantum Circuit Born Machines (QCBMs) have been almost entirely evaluated on their capability to learn a given target distribution with high accuracy. While this aspect may be ideal for some tasks, it limits the scope of a generative model's assessment to its ability to memorize data rather than generalize. As a result, there has been little understanding of a model's generalization performance and the relation between such capability and the resource requirements, e.g., the circuit depth and the amount of training data. In this work, we leverage upon a recently proposed generalization evaluation framework to begin addressing this knowledge gap. We first investigate the QCBM's learning process of a cardinality-constrained distribution and see an increase in generalization performance while increasing the circuit depth. In the 12-qubit example presented here, we observe that with as few as 30% of the valid data in the training set, the QCBM exhibits the best generalization performance toward generating unseen and valid data. Lastly, we assess the QCBM's ability to generalize not only to valid samples, but to high-quality bitstrings distributed according to an adequately re-weighted distribution. We see that the QCBM is able to effectively learn the reweighted dataset and generate unseen samples with higher quality than those in the training set. To the best of our knowledge, this is the first work in the literature that presents the QCBM's generalization performance as an integral evaluation metric for quantum generative models, and demonstrates the QCBM's ability to generalize to high-quality, desired novel samples.


Generalization Metrics for Practical Quantum Advantage in Generative Models

arXiv.org Artificial Intelligence

As the quantum computing community gravitates towards understanding the practical benefits of quantum computers, having a clear definition and evaluation scheme for assessing practical quantum advantage in the context of specific applications is paramount. Generative modeling, for example, is a widely accepted natural use case for quantum computers, and yet has lacked a concrete approach for quantifying success of quantum models over classical ones. In this work, we construct a simple and unambiguous approach to probe practical quantum advantage for generative modeling by measuring the algorithm's generalization performance. Using the sample-based approach proposed here, any generative model, from state-of-the-art classical generative models such as GANs to quantum models such as Quantum Circuit Born Machines, can be evaluated on the same ground on a concrete well-defined framework. In contrast to other sample-based metrics for probing practical generalization, we leverage constrained optimization problems (e.g., cardinality-constrained problems) and use these discrete datasets to define specific metrics capable of unambiguously measuring the quality of the samples and the model's generalization capabilities for generating data beyond the training set but still within the valid solution space. Additionally, our metrics can diagnose trainability issues such as mode collapse and overfitting, as we illustrate when comparing GANs to quantum-inspired models built out of tensor networks. Our simulation results show that our quantum-inspired models have up to a $68 \times$ enhancement in generating unseen unique and valid samples compared to GANs, and a ratio of 61:2 for generating samples with better quality than those observed in the training set. We foresee these metrics as valuable tools for rigorously defining practical quantum advantage in the domain of generative modeling.


Generative Modeling with Quantum Neurons

arXiv.org Artificial Intelligence

The recently proposed Quantum Neuron Born Machine (QNBM) has demonstrated quality initial performance as the first quantum generative machine learning (ML) model proposed with non-linear activations. However, previous investigations have been limited in scope with regards to the model's learnability and simulatability. In this work, we make a considerable leap forward by providing an extensive deep dive into the QNBM's potential as a generative model. We first demonstrate that the QNBM's network representation makes it non-trivial to be classically efficiently simulated. Following this result, we showcase the model's ability to learn (express and train on) a wider set of probability distributions, and benchmark the performance against a classical Restricted Boltzmann Machine (RBM). The QNBM is able to outperform this classical model on all distributions, even for the most optimally trained RBM among our simulations. Specifically, the QNBM outperforms the RBM with an improvement factor of 75.3x, 6.4x, and 3.5x for the discrete Gaussian, cardinality-constrained, and Bars and Stripes distributions respectively. Lastly, we conduct an initial investigation into the model's generalization capabilities and use a KL test to show that the model is able to approximate the ground truth probability distribution more closely than the training distribution when given access to a limited amount of data. Overall, we put forth a stronger case in support of using the QNBM for larger-scale generative tasks.


Introducing Non-Linear Activations into Quantum Generative Models

arXiv.org Artificial Intelligence

Due to the linearity of quantum mechanics, it remains a challenge to design quantum generative machine learning models that embed non-linear activations into the evolution of the statevector. However, some of the most successful classical generative models, such as those based on neural networks, involve highly non-linear dynamics for quality training. In this paper, we explore the effect of these dynamics in quantum generative modeling by introducing a model that adds non-linear activations via a neural network structure onto the standard Born Machine framework - the Quantum Neuron Born Machine (QNBM). To achieve this, we utilize a previously introduced Quantum Neuron subroutine, which is a repeat-until-success circuit with mid-circuit measurements and classical control. After introducing the QNBM, we investigate how its performance depends on network size, by training a 3-layer QNBM with 4 output neurons and various input and hidden layer sizes. We then compare our non-linear QNBM to the linear Quantum Circuit Born Machine (QCBM). We allocate similar time and memory resources to each model, such that the only major difference is the qubit overhead required by the QNBM. With gradient-based training, we show that while both models can easily learn a trivial uniform probability distribution, on a more challenging class of distributions, the QNBM achieves an almost 3x smaller error rate than a QCBM with a similar number of tunable parameters. We therefore provide evidence that suggests that non-linearity is a useful resource in quantum generative models, and we put forth the QNBM as a new model with good generative performance and potential for quantum advantage.


Long-time simulations with high fidelity on quantum hardware

arXiv.org Machine Learning

Moderate-size quantum computers are now publicly accessible over the cloud, opening the exciting possibility of performing dynamical simulations of quantum systems. However, while rapidly improving, these devices have short coherence times, limiting the depth of algorithms that may be successfully implemented. Here we demonstrate that, despite these limitations, it is possible to implement long-time, high fidelity simulations on current hardware. Specifically, we simulate an XY-model spin chain on the Rigetti and IBM quantum computers, maintaining a fidelity of at least 0.9 for over 600 time steps. This is a factor of 150 longer than is possible using the iterated Trotter method. Our simulations are performed using a new algorithm that we call the fixed state Variational Fast Forwarding (fsVFF) algorithm. This algorithm decreases the circuit depth and width required for a quantum simulation by finding an approximate diagonalization of a short time evolution unitary. Crucially, fsVFF only requires finding a diagonalization on the subspace spanned by the initial state, rather than on the total Hilbert space as with previous methods, substantially reducing the required resources.