Goto

Collaborating Authors

 Gerstein, Mark


MedAgentsBench: Benchmarking Thinking Models and Agent Frameworks for Complex Medical Reasoning

arXiv.org Artificial Intelligence

Large Language Models (LLMs) have shown impressive performance on existing medical question-answering benchmarks. This high performance makes it increasingly difficult to meaningfully evaluate and differentiate advanced methods. We present MedAgentsBench, a benchmark that focuses on challenging medical questions requiring multi-step clinical reasoning, diagnosis formulation, and treatment planning-scenarios where current models still struggle despite their strong performance on standard tests. Drawing from seven established medical datasets, our benchmark addresses three key limitations in existing evaluations: (1) the prevalence of straightforward questions where even base models achieve high performance, (2) inconsistent sampling and evaluation protocols across studies, and (3) lack of systematic analysis of the interplay between performance, cost, and inference time. Through experiments with various base models and reasoning methods, we demonstrate that the latest thinking models, DeepSeek R1 and OpenAI o3, exhibit exceptional performance in complex medical reasoning tasks. Additionally, advanced search-based agent methods offer promising performance-to-cost ratios compared to traditional approaches. Our analysis reveals substantial performance gaps between model families on complex questions and identifies optimal model selections for different computational constraints. Our benchmark and evaluation framework are publicly available at https://github.com/gersteinlab/medagents-benchmark.


E2Former: A Linear-time Efficient and Equivariant Transformer for Scalable Molecular Modeling

arXiv.org Artificial Intelligence

Equivariant Graph Neural Networks (EGNNs) have demonstrated significant success in modeling microscale systems, including those in chemistry, biology and materials science. However, EGNNs face substantial computational challenges due to the high cost of constructing edge features via spherical tensor products, making them impractical for large-scale systems. To address this limitation, we introduce E2Former, an equivariant and efficient transformer architecture that incorporates the Wigner $6j$ convolution (Wigner $6j$ Conv). By shifting the computational burden from edges to nodes, the Wigner $6j$ Conv reduces the complexity from $O(|\mathcal{E}|)$ to $ O(| \mathcal{V}|)$ while preserving both the model's expressive power and rotational equivariance. We show that this approach achieves a 7x-30x speedup compared to conventional $\mathrm{SO}(3)$ convolutions. Furthermore, our empirical results demonstrate that the derived E2Former mitigates the computational challenges of existing approaches without compromising the ability to capture detailed geometric information. This development could suggest a promising direction for scalable and efficient molecular modeling.


ChemAgent: Self-updating Library in Large Language Models Improves Chemical Reasoning

arXiv.org Artificial Intelligence

Chemical reasoning usually involves complex, multi-step processes that demand precise calculations, where even minor errors can lead to cascading failures. Furthermore, large language models (LLMs) encounter difficulties handling domain-specific formulas, executing reasoning steps accurately, and integrating code effectively when tackling chemical reasoning tasks. To address these challenges, we present ChemAgent, a novel framework designed to improve the performance of LLMs through a dynamic, self-updating library. This library is developed by decomposing chemical tasks into sub-tasks and compiling these sub-tasks into a structured collection that can be referenced for future queries. Then, when presented with a new problem, ChemAgent retrieves and refines pertinent information from the library, which we call memory, facilitating effective task decomposition and the generation of solutions. Our method designs three types of memory and a library-enhanced reasoning component, enabling LLMs to improve over time through experience. Experimental results on four chemical reasoning datasets from SciBench demonstrate that ChemAgent achieves performance gains of up to 46% (GPT-4), significantly outperforming existing methods. Our findings suggest substantial potential for future applications, including tasks such as drug discovery and materials science. Our code can be found at https://github.com/gersteinlab/chemagent


ChemSafetyBench: Benchmarking LLM Safety on Chemistry Domain

arXiv.org Artificial Intelligence

The advancement and extensive application of large language models (LLMs) have been remarkable, including their use in scientific research assistance. However, these models often generate scientifically incorrect or unsafe responses, and in some cases, they may encourage users to engage in dangerous behavior. To address this issue in the field of chemistry, we introduce ChemSafetyBench, a benchmark designed to evaluate the accuracy and safety of LLM responses. ChemSafetyBench encompasses three key tasks: querying chemical properties, assessing the legality of chemical uses, and describing synthesis methods, each requiring increasingly deeper chemical knowledge. Our dataset has more than 30K samples across various chemical materials. We incorporate handcrafted templates and advanced jailbreaking scenarios to enhance task diversity. Our automated evaluation framework thoroughly assesses the safety, accuracy, and appropriateness of LLM responses. Extensive experiments with state-of-the-art LLMs reveal notable strengths and critical vulnerabilities, underscoring the need for robust safety measures. ChemSafetyBench aims to be a pivotal tool in developing safer AI technologies in chemistry. Our code and dataset are available at https://github.com/HaochenZhao/SafeAgent4Chem. Warning: this paper contains discussions on the synthesis of controlled chemicals using AI models.


Step-Back Profiling: Distilling User History for Personalized Scientific Writing

arXiv.org Artificial Intelligence

Large language models (LLM) excel at a variety of natural language processing tasks, yet they struggle to generate personalized content for individuals, particularly in real-world scenarios like scientific writing. Addressing this challenge, we introduce STEP-BACK PROFILING to personalize LLMs by distilling user history into concise profiles, including essential traits and preferences of users. To conduct the experiments, we construct a Personalized Scientific Writing (PSW) dataset to study multi-user personalization. PSW requires the models to write scientific papers given specialized author groups with diverse academic backgrounds. As for the results, we demonstrate the effectiveness of capturing user characteristics via STEP-BACK PROFILING for collaborative writing. Moreover, our approach outperforms the baselines by up to 3.6 points on the general personalization benchmark (LaMP), including 7 personalization LLM tasks. Our ablation studies validate the contributions of different components in our method and provide insights into our task definition. Our dataset and code are available at \url{https://github.com/gersteinlab/step-back-profiling}.


MIMIR: A Streamlined Platform for Personalized Agent Tuning in Domain Expertise

arXiv.org Artificial Intelligence

Recently, large language models (LLMs) have evolved into interactive agents, proficient in planning, tool use, and task execution across a wide variety of tasks. However, without specific agent tuning, open-source models like LLaMA currently struggle to match the efficiency of GPT- 4, particularly given the scarcity of agent-tuning datasets for fine-tuning. In response, we introduce \textsc{Mimir}: a streamlined platform offering a customizable pipeline that enables users to leverage both private knowledge and publicly available, legally compliant datasets at scale for \textbf{personalized agent tuning}. Additionally, \textsc{Mimir} supports the generation of general instruction-tuning datasets from the same input. This dual capability ensures that language agents developed through the platform possess both specific agent abilities and general competencies. \textsc{Mimir} integrates these features into a cohesive end-to-end platform, facilitating everything from the uploading of personalized files to one-click agent fine-tuning.


ChatCell: Facilitating Single-Cell Analysis with Natural Language

arXiv.org Artificial Intelligence

As Large Language Models (LLMs) rapidly evolve, their influence in science is becoming increasingly prominent. The emerging capabilities of LLMs in task generalization and free-form dialogue can significantly advance fields like chemistry and biology. However, the field of single-cell biology, which forms the foundational building blocks of living organisms, still faces several challenges. High knowledge barriers and limited scalability in current methods restrict the full exploitation of LLMs in mastering single-cell data, impeding direct accessibility and rapid iteration. To this end, we introduce ChatCell, which signifies a paradigm shift by facilitating single-cell analysis with natural language. Leveraging vocabulary adaptation and unified sequence generation, ChatCell has acquired profound expertise in single-cell biology and the capability to accommodate a diverse range of analysis tasks. Extensive experiments further demonstrate ChatCell's robust performance and potential to deepen single-cell insights, paving the way for more accessible and intuitive exploration in this pivotal field. Our project homepage is available at https://zjunlp.github.io/project/ChatCell.


A Survey of Generative AI for De Novo Drug Design: New Frontiers in Molecule and Protein Generation

arXiv.org Artificial Intelligence

Artificial intelligence (AI)-driven methods can vastly improve the historically costly drug design process, with various generative models already in widespread use. Generative models for de novo drug design, in particular, focus on the creation of novel biological compounds entirely from scratch, representing a promising future direction. Rapid development in the field, combined with the inherent complexity of the drug design process, creates a difficult landscape for new researchers to enter. In this survey, we organize de novo drug design into two overarching themes: small molecule and protein generation. Within each theme, we identify a variety of subtasks and applications, highlighting important datasets, benchmarks, and model architectures and comparing the performance of top models. We take a broad approach to AI-driven drug design, allowing for both micro-level comparisons of various methods within each subtask and macro-level observations across different fields. We discuss parallel challenges and approaches between the two applications and highlight future directions for AI-driven de novo drug design as a whole. An organized repository of all covered sources is available at https://github.com/gersteinlab/GenAI4Drug.


Prioritizing Safeguarding Over Autonomy: Risks of LLM Agents for Science

arXiv.org Artificial Intelligence

Intelligent agents powered by large language models (LLMs) have demonstrated substantial promise in autonomously conducting experiments and facilitating scientific discoveries across various disciplines. While their capabilities are promising, they also introduce novel vulnerabilities that demand careful consideration for safety. However, there exists a notable gap in the literature, as there has been no comprehensive exploration of these vulnerabilities. This position paper fills this gap by conducting a thorough examination of vulnerabilities in LLM-based agents within scientific domains, shedding light on potential risks associated with their misuse and emphasizing the need for safety measures. We begin by providing a comprehensive overview of the potential risks inherent to scientific LLM agents, taking into account user intent, the specific scientific domain, and their potential impact on the external environment. Then, we delve into the origins of these vulnerabilities and provide a scoping review of the limited existing works. Based on our analysis, we propose a triadic framework involving human regulation, agent alignment, and an understanding of environmental feedback (agent regulation) to mitigate these identified risks. Furthermore, we highlight the limitations and challenges associated with safeguarding scientific agents and advocate for the development of improved models, robust benchmarks, and comprehensive regulations to address these issues effectively.


BioCoder: A Benchmark for Bioinformatics Code Generation with Contextual Pragmatic Knowledge

arXiv.org Artificial Intelligence

Pre-trained large language models have significantly improved code generation. As these models scale up, there is an increasing need for the output to handle more intricate tasks and to be appropriately specialized to particular domains. Here, we target bioinformatics due to the amount of specialized domain knowledge, algorithms, and data operations this discipline requires. We present BioCoder, a benchmark developed to evaluate large language models (LLMs) in generating bioinformatics-specific code. BioCoder spans a broad spectrum of the field and covers cross-file dependencies, class declarations, and global variables. It incorporates 1026 Python functions and 1243 Java methods extracted from GitHub, along with 253 examples from the Rosalind Project, all pertaining to bioinformatics. Using topic modeling we show that overall coverage of the included code is representative of the full spectrum of bioinformatics calculations. BioCoder incorporates a fuzz-testing framework for evaluation. We have applied it to evaluate many models including InCoder, CodeGen, CodeGen2, SantaCoder, StarCoder, StarCoder+, InstructCodeT5+, GPT-3.5, and GPT-4. Furthermore, we finetuned StarCoder, demonstrating how our dataset can effectively enhance the performance of LLMs on our benchmark (by >15% in terms of Pass@K in certain prompt configurations and always >3%). The results highlight two key aspects of successful models: (1) Successful models accommodate a long prompt (> ~2600 tokens) with full context, for functional dependencies. (2) They contain specific domain knowledge of bioinformatics, beyond just general coding knowledge. This is evident from the performance gain of GPT-3.5/4 compared to the smaller models on the benchmark (50% vs up to ~25%). Our dataset, benchmark, Docker images, and scripts required for testing are all available at https://github.com/gersteinlab/biocoder.