Georgiou, Efthymios
PowMix: A Versatile Regularizer for Multimodal Sentiment Analysis
Georgiou, Efthymios, Avrithis, Yannis, Potamianos, Alexandros
Multimodal sentiment analysis (MSA) leverages heterogeneous data sources to interpret the complex nature of human sentiments. Despite significant progress in multimodal architecture design, the field lacks comprehensive regularization methods. This paper introduces PowMix, a versatile embedding space regularizer that builds upon the strengths of unimodal mixing-based regularization approaches and introduces novel algorithmic components that are specifically tailored to multimodal tasks. PowMix is integrated before the fusion stage of multimodal architectures and facilitates intra-modal mixing, such as mixing text with text, to act as a regularizer. PowMix consists of five components: 1) a varying number of generated mixed examples, 2) mixing factor reweighting, 3) anisotropic mixing, 4) dynamic mixing, and 5) cross-modal label mixing. Extensive experimentation across benchmark MSA datasets and a broad spectrum of diverse architectural designs demonstrate the efficacy of PowMix, as evidenced by consistent performance improvements over baselines and existing mixing methods. An in-depth ablation study highlights the critical contribution of each PowMix component and how they synergistically enhance performance. Furthermore, algorithmic analysis demonstrates how PowMix behaves in different scenarios, particularly comparing early versus late fusion architectures. Notably, PowMix enhances overall performance without sacrificing model robustness or magnifying text dominance. It also retains its strong performance in situations of limited data. Our findings position PowMix as a promising versatile regularization strategy for MSA. Code will be made available.
SeqAug: Sequential Feature Resampling as a modality agnostic augmentation method
Georgiou, Efthymios, Potamianos, Alexandros
Data augmentation is a prevalent technique for improving performance in various machine learning applications. We propose SeqAug, a modality-agnostic augmentation method that is tailored towards sequences of extracted features. The core idea of SeqAug is to augment the sequence by resampling from the underlying feature distribution. Resampling is performed by randomly selecting feature dimensions and permuting them along the temporal axis. Experiments on CMU-MOSEI verify that SeqAug is modality agnostic; it can be successfully applied to a single modality or multiple modalities. We further verify its compatibility with both recurrent and transformer architectures, Figure 1: The bag of all extracted features. We assume that and also demonstrate comparable to state-of-the-art results.
Alternating Objectives Generates Stronger PGD-Based Adversarial Attacks
Antoniou, Nikolaos, Georgiou, Efthymios, Potamianos, Alexandros
Designing powerful adversarial attacks is of paramount importance for the evaluation of $\ell_p$-bounded adversarial defenses. Projected Gradient Descent (PGD) is one of the most effective and conceptually simple algorithms to generate such adversaries. The search space of PGD is dictated by the steepest ascent directions of an objective. Despite the plethora of objective function choices, there is no universally superior option and robustness overestimation may arise from ill-suited objective selection. Driven by this observation, we postulate that the combination of different objectives through a simple loss alternating scheme renders PGD more robust towards design choices. We experimentally verify this assertion on a synthetic-data example and by evaluating our proposed method across 25 different $\ell_{\infty}$-robust models and 3 datasets. The performance improvement is consistent, when compared to the single loss counterparts. In the CIFAR-10 dataset, our strongest adversarial attack outperforms all of the white-box components of AutoAttack (AA) ensemble, as well as the most powerful attacks existing on the literature, achieving state-of-the-art results in the computational budget of our study ($T=100$, no restarts).