Goto

Collaborating Authors

 Gelbukh, Alexander


Comparative Approaches to Sentiment Analysis Using Datasets in Major European and Arabic Languages

arXiv.org Artificial Intelligence

This study explores transformer-based models such as BERT, mBERT, and XLM-R for multilingual sentiment analysis across diverse linguistic structures. Key contributions include the identification of XLM-R's superior adaptability in morphologically complex languages, achieving accuracy levels above 88%. The work highlights fine-tuning strategies and emphasizes their significance for improving sentiment classification in underrepresented languages.


PRKAN: Parameter-Reduced Kolmogorov-Arnold Networks

arXiv.org Artificial Intelligence

MLPs have been one of key components in modern neural network architectures for years. Their simplicity makes them widely used for capturing complex relationships through multiple layers of non-linear transformations. However, their role has been reconsidered recently with the revival of Kolmogorov-Arnold Networks (KANs) [1, 2]. In these papers, fixed activation functions used in MLPs are described as "nodes," and the authors proposed replacing them with learnable activation functions like B-splines, referred to as "edges", to improve performance in mathematical and physical examples. To address Hilbert's 13th problem [3], the Kolmogorov-Arnold Representation Theorem (KART) [4] was introduced. It posits that any continuous function involving multiple variables can be decomposed into a sum of continuous functions of single variables, thus inspiring the creation of KANs. The work of Liu et al. [1] on KANs has inspired numerous studies exploring the use of various basis and polynomial functions as replacements for B-splines [5, 6, 7, 8, 9, 10, 11, 12, 13], investigating the model's performance compared to MLPs. Several studies have shown that KANs do not always outperform MLPs when using the same training parameters [14, 15]. Moreover, while KANs achieve better performance than MLPs with the same network structure, they often require a significantly larger number of parameters [7, 16, 17, 18, 19].


Synthetic Time Series Data Generation for Healthcare Applications: A PCG Case Study

arXiv.org Artificial Intelligence

The generation of high-quality medical time series data is essential for advancing healthcare diagnostics and safeguarding patient privacy. Specifically, synthesizing realistic phonocardiogram (PCG) signals offers significant potential as a cost-effective and efficient tool for cardiac disease pre-screening. Despite its potential, the synthesis of PCG signals for this specific application received limited attention in research. In this study, we employ and compare three state-of-the-art generative models from different categories - WaveNet, DoppelGANger, and DiffWave - to generate high-quality PCG data. We use data from the George B. Moody PhysioNet Challenge 2022. Our methods are evaluated using various metrics widely used in the previous literature in the domain of time series data generation, such as mean absolute error and maximum mean discrepancy. Our results demonstrate that the generated PCG data closely resembles the original datasets, indicating the effectiveness of our generative models in producing realistic synthetic PCG data. In our future work, we plan to incorporate this method into a data augmentation pipeline to synthesize abnormal PCG signals with heart murmurs, in order to address the current scarcity of abnormal data. We hope to improve the robustness and accuracy of diagnostic tools in cardiology, enhancing their effectiveness in detecting heart murmurs.


Social Support Detection from Social Media Texts

arXiv.org Artificial Intelligence

Social support, conveyed through a multitude of interactions and platforms such as social media, plays a pivotal role in fostering a sense of belonging, aiding resilience in the face of challenges, and enhancing overall well-being. This paper introduces Social Support Detection (SSD) as a Natural language processing (NLP) task aimed at identifying supportive interactions within online communities. The study presents the task of Social Support Detection (SSD) in three subtasks: two binary classification tasks and one multiclass task, with labels detailed in the dataset section. We conducted experiments on a dataset comprising 10,000 YouTube comments. Traditional machine learning models were employed, utilizing various feature combinations that encompass linguistic, psycholinguistic, emotional, and sentiment information. Additionally, we experimented with neural network-based models using various word embeddings to enhance the performance of our models across these subtasks.The results reveal a prevalence of group-oriented support in online dialogues, reflecting broader societal patterns. The findings demonstrate the effectiveness of integrating psycholinguistic, emotional, and sentiment features with n-grams in detecting social support and distinguishing whether it is directed toward an individual or a group. The best results for different subtasks across all experiments range from 0.72 to 0.82.


Ethio-Fake: Cutting-Edge Approaches to Combat Fake News in Under-Resourced Languages Using Explainable AI

arXiv.org Artificial Intelligence

The proliferation of fake news has emerged as a significant threat to the integrity of information dissemination, particularly on social media platforms. Misinformation can spread quickly due to the ease of creating and disseminating content, affecting public opinion and sociopolitical events. Identifying false information is therefore essential to reducing its negative consequences and maintaining the reliability of online news sources. Traditional approaches to fake news detection often rely solely on content-based features, overlooking the crucial role of social context in shaping the perception and propagation of news articles. In this paper, we propose a comprehensive approach that integrates social context-based features with news content features to enhance the accuracy of fake news detection in under-resourced languages. We perform several experiments utilizing a variety of methodologies, including traditional machine learning, neural networks, ensemble learning, and transfer learning. Assessment of the outcomes of the experiments shows that the ensemble learning approach has the highest accuracy, achieving a 0.99 F1 score. Additionally, when compared with monolingual models, the fine-tuned model with the target language outperformed others, achieving a 0.94 F1 score. We analyze the functioning of the models, considering the important features that contribute to model performance, using explainable AI techniques.


ThangDLU at #SMM4H 2024: Encoder-decoder models for classifying text data on social disorders in children and adolescents

arXiv.org Artificial Intelligence

This paper describes our participation in Task 3 and Task 5 of the #SMM4H (Social Media Mining for Health) 2024 Workshop, explicitly targeting the classification challenges within tweet data. Task 3 is a multi-class classification task centered on tweets discussing the impact of outdoor environments on symptoms of social anxiety. Task 5 involves a binary classification task focusing on tweets reporting medical disorders in children. We applied transfer learning from pre-trained encoder-decoder models such as BART-base and T5-small to identify the labels of a set of given tweets. We also presented some data augmentation methods to see their impact on the model performance. Finally, the systems obtained the best F1 score of 0.627 in Task 3 and the best F1 score of 0.841 in Task 5.


EthioMT: Parallel Corpus for Low-resource Ethiopian Languages

arXiv.org Artificial Intelligence

Recent research in natural language processing (NLP) has achieved impressive performance in tasks such as machine translation (MT), news classification, and question-answering in high-resource languages. However, the performance of MT leaves much to be desired for low-resource languages. This is due to the smaller size of available parallel corpora in these languages, if such corpora are available at all. NLP in Ethiopian languages suffers from the same issues due to the unavailability of publicly accessible datasets for NLP tasks, including MT. To help the research community and foster research for Ethiopian languages, we introduce EthioMT -- a new parallel corpus for 15 languages. We also create a new benchmark by collecting a dataset for better-researched languages in Ethiopia. We evaluate the newly collected corpus and the benchmark dataset for 23 Ethiopian languages using transformer and fine-tuning approaches.


Evaluating Embeddings for One-Shot Classification of Doctor-AI Consultations

arXiv.org Artificial Intelligence

Effective communication between healthcare providers and patients is crucial to providing high-quality patient care. In this work, we investigate how Doctor-written and AI-generated texts in healthcare consultations can be classified using state-of-the-art embeddings and one-shot classification systems. By analyzing embeddings such as bag-of-words, character n-grams, Word2Vec, GloVe, fastText, and GPT2 embeddings, we examine how well our one-shot classification systems capture semantic information within medical consultations. Results show that the embeddings are capable of capturing semantic features from text in a reliable and adaptable manner. Overall, Word2Vec, GloVe and Character n-grams embeddings performed well, indicating their suitability for modeling targeted to this task. GPT2 embedding also shows notable performance, indicating its suitability for models tailored to this task as well. Our machine learning architectures significantly improved the quality of health conversations when training data are scarce, improving communication between patients and healthcare providers.


GuReT: Distinguishing Guilt and Regret related Text

arXiv.org Artificial Intelligence

The intricate relationship between human decision-making and emotions, particularly guilt and regret, has significant implications on behavior and well-being. Yet, these emotions subtle distinctions and interplay are often overlooked in computational models. This paper introduces a dataset tailored to dissect the relationship between guilt and regret and their unique textual markers, filling a notable gap in affective computing research. Our approach treats guilt and regret recognition as a binary classification task and employs three machine learning and six transformer-based deep learning techniques to benchmark the newly created dataset. The study further implements innovative reasoning methods like chain-of-thought and tree-of-thought to assess the models interpretive logic. The results indicate a clear performance edge for transformer-based models, achieving a 90.4% macro F1 score compared to the 85.3% scored by the best machine learning classifier, demonstrating their superior capability in distinguishing complex emotional states.


Leveraging the power of transformers for guilt detection in text

arXiv.org Artificial Intelligence

In recent years, language models and deep learning techniques have revolutionized natural language processing tasks, including emotion detection. However, the specific emotion of guilt has received limited attention in this field. In this research, we explore the applicability of three transformer-based language models for detecting guilt in text and compare their performance for general emotion detection and guilt detection. Our proposed model outformed BERT and RoBERTa models by two and one points respectively. Additionally, we analyze the challenges in developing accurate guilt-detection models and evaluate our model's effectiveness in detecting related emotions like "shame" through qualitative analysis of results.