Goto

Collaborating Authors

 Ge, Yuying


EgoPlan-Bench2: A Benchmark for Multimodal Large Language Model Planning in Real-World Scenarios

arXiv.org Artificial Intelligence

The advent of Multimodal Large Language Models, leveraging the power of Large Language Models, has recently demonstrated superior multimodal understanding and reasoning abilities, heralding a new era for artificial general intelligence. However, achieving AGI necessitates more than just comprehension and reasoning. A crucial capability required is effective planning in diverse scenarios, which involves making reasonable decisions based on complex environments to solve real-world problems. Despite its importance, the planning abilities of current MLLMs in varied scenarios remain underexplored. In this paper, we introduce EgoPlan-Bench2, a rigorous and comprehensive benchmark designed to assess the planning capabilities of MLLMs across a wide range of real-world scenarios. EgoPlan-Bench2 encompasses everyday tasks spanning 4 major domains and 24 detailed scenarios, closely aligned with human daily life. EgoPlan-Bench2 is constructed through a semi-automatic process utilizing egocentric videos, complemented by manual verification. Grounded in a first-person perspective, it mirrors the way humans approach problem-solving in everyday life. We evaluate 21 competitive MLLMs and provide an in-depth analysis of their limitations, revealing that they face significant challenges in real-world planning. To further improve the planning proficiency of current MLLMs, we propose a training-free approach using multimodal Chain-of-Thought (CoT) prompting through investigating the effectiveness of various multimodal prompts in complex planning. Our approach enhances the performance of GPT-4V by 10.24 on EgoPlan-Bench2 without additional training. Our work not only sheds light on the current limitations of MLLMs in planning, but also provides insights for future enhancements in this critical area. We have made data and code available at https://qiulu66.github.io/egoplanbench2/.


Moto: Latent Motion Token as the Bridging Language for Robot Manipulation

arXiv.org Artificial Intelligence

Recent developments in Large Language Models pre-trained on extensive corpora have shown significant success in various natural language processing tasks with minimal fine-tuning. This success offers new promise for robotics, which has long been constrained by the high cost of action-labeled data. We ask: given the abundant video data containing interaction-related knowledge available as a rich "corpus", can a similar generative pre-training approach be effectively applied to enhance robot learning? The key challenge is to identify an effective representation for autoregressive pre-training that benefits robot manipulation tasks. Inspired by the way humans learn new skills through observing dynamic environments, we propose that effective robotic learning should emphasize motion-related knowledge, which is closely tied to low-level actions and is hardware-agnostic, facilitating the transfer of learned motions to actual robot actions. To this end, we introduce Moto, which converts video content into latent Motion Token sequences by a Latent Motion Tokenizer, learning a bridging "language" of motion from videos in an unsupervised manner. We pre-train Moto-GPT through motion token autoregression, enabling it to capture diverse visual motion knowledge. After pre-training, Moto-GPT demonstrates the promising ability to produce semantically interpretable motion tokens, predict plausible motion trajectories, and assess trajectory rationality through output likelihood. To transfer learned motion priors to real robot actions, we implement a co-fine-tuning strategy that seamlessly bridges latent motion token prediction and real robot control. Extensive experiments show that the fine-tuned Moto-GPT exhibits superior robustness and efficiency on robot manipulation benchmarks, underscoring its effectiveness in transferring knowledge from video data to downstream visual manipulation tasks.


Supervised Fine-tuning in turn Improves Visual Foundation Models

arXiv.org Artificial Intelligence

Image-text training like CLIP has dominated the pretraining of vision foundation models in recent years. Subsequent efforts have been made to introduce region-level visual learning into CLIP's pretraining but face scalability challenges due to the lack of large-scale region-level datasets. Drawing inspiration from supervised fine-tuning (SFT) in natural language processing such as instruction tuning, we explore the potential of fine-grained SFT in enhancing the generation of vision foundation models after their pretraining. Thus a two-stage method ViSFT (Vision SFT) is proposed to unleash the fine-grained knowledge of vision foundation models. In ViSFT, the vision foundation model is enhanced by performing visual joint learning on some in-domain tasks and then tested on out-of-domain benchmarks. With updating using ViSFT on 8 V100 GPUs in less than 2 days, a vision transformer with over 4.4B parameters shows improvements across various out-of-domain benchmarks including vision and vision-linguistic scenarios.


EgoPlan-Bench: Benchmarking Egocentric Embodied Planning with Multimodal Large Language Models

arXiv.org Artificial Intelligence

Multimodal Large Language Models (MLLMs), building upon the powerful Large Language Models (LLMs) with exceptional reasoning and generalization capability, have opened up new avenues for embodied task planning. MLLMs excel in their ability to integrate diverse environmental inputs, such as real-time task progress, visual observations, and open-form language instructions, which are crucial for executable task planning. In this work, we introduce a benchmark with human annotations, EgoPlan-Bench, to quantitatively investigate the potential of MLLMs as embodied task planners in real-world scenarios. Our benchmark is distinguished by realistic tasks derived from real-world videos, a diverse set of actions involving interactions with hundreds of different objects, and complex visual observations from varied environments. We evaluate various open-source MLLMs, revealing that these models have not yet evolved into embodied planning generalists (even GPT-4V). We further construct an instruction-tuning dataset EgoPlan-IT from videos of human-object interactions, to facilitate the learning of high-level task planning in intricate real-world situations. The experiment results demonstrate that the model tuned on EgoPlan-IT not only significantly improves performance on our benchmark, but also effectively acts as embodied planner in simulations.


ViT-Lens-2: Gateway to Omni-modal Intelligence

arXiv.org Artificial Intelligence

Aiming to advance AI agents, large foundation models significantly improve reasoning and instruction execution, yet the current focus on vision and language neglects the potential of perceiving diverse modalities in open-world environments. However, the success of data-driven vision and language models is costly or even infeasible to be reproduced for rare modalities. In this paper, we present ViT-Lens-2 that facilitates efficient omni-modal representation learning by perceiving novel modalities with a pretrained ViT and aligning them to a pre-defined space. Specifically, the modality-specific lens is tuned to project any-modal signals to an intermediate embedding space, which are then processed by a strong ViT with pre-trained visual knowledge. The encoded representations are optimized toward aligning with the modal-independent space, pre-defined by off-the-shelf foundation models. ViT-Lens-2 provides a unified solution for representation learning of increasing modalities with two appealing advantages: (i) Unlocking the great potential of pretrained ViTs to novel modalities effectively with efficient data regime; (ii) Enabling emergent downstream capabilities through modality alignment and shared ViT parameters. We tailor ViT-Lens-2 to learn representations for 3D point cloud, depth, audio, tactile and EEG, and set new state-of-the-art results across various understanding tasks, such as zero-shot classification. By seamlessly integrating ViT-Lens-2 into Multimodal Foundation Models, we enable Any-modality to Text and Image Generation in a zero-shot manner. Code and models are available at https://github.com/TencentARC/ViT-Lens.


GNFactor: Multi-Task Real Robot Learning with Generalizable Neural Feature Fields

arXiv.org Artificial Intelligence

It is a long-standing problem in robotics to develop agents capable of executing diverse manipulation tasks from visual observations in unstructured real-world environments. To achieve this goal, the robot needs to have a comprehensive understanding of the 3D structure and semantics of the scene. In this work, we present $\textbf{GNFactor}$, a visual behavior cloning agent for multi-task robotic manipulation with $\textbf{G}$eneralizable $\textbf{N}$eural feature $\textbf{F}$ields. GNFactor jointly optimizes a generalizable neural field (GNF) as a reconstruction module and a Perceiver Transformer as a decision-making module, leveraging a shared deep 3D voxel representation. To incorporate semantics in 3D, the reconstruction module utilizes a vision-language foundation model ($\textit{e.g.}$, Stable Diffusion) to distill rich semantic information into the deep 3D voxel. We evaluate GNFactor on 3 real robot tasks and perform detailed ablations on 10 RLBench tasks with a limited number of demonstrations. We observe a substantial improvement of GNFactor over current state-of-the-art methods in seen and unseen tasks, demonstrating the strong generalization ability of GNFactor. Our project website is https://yanjieze.com/GNFactor/ .


SEED-Bench: Benchmarking Multimodal LLMs with Generative Comprehension

arXiv.org Artificial Intelligence

Based on powerful Large Language Models (LLMs), recent generative Multimodal Large Language Models (MLLMs) have gained prominence as a pivotal research area, exhibiting remarkable capability for both comprehension and generation. In this work, we address the evaluation of generative comprehension in MLLMs as a preliminary step towards a comprehensive assessment of generative models, by introducing a benchmark named SEED-Bench. SEED-Bench consists of 19K multiple choice questions with accurate human annotations (x 6 larger than existing benchmarks), which spans 12 evaluation dimensions including the comprehension of both the image and video modality. We develop an advanced pipeline for generating multiple-choice questions that target specific evaluation dimensions, integrating both automatic filtering and manual verification processes. Multiple-choice questions with groundtruth options derived from human annotation enables an objective and efficient assessment of model performance, eliminating the need for human or GPT intervention during evaluation. We further evaluate the performance of 18 models across all 12 dimensions, covering both the spatial and temporal understanding. By revealing the limitations of existing MLLMs through evaluation results, we aim for SEED-Bench to provide insights for motivating future research. We will launch and consistently maintain a leaderboard to provide a platform for the community to assess and investigate model capability.


Policy Adaptation from Foundation Model Feedback

arXiv.org Artificial Intelligence

Recent progress on vision-language foundation models have brought significant advancement to building general-purpose robots. By using the pre-trained models to encode the scene and instructions as inputs for decision making, the instruction-conditioned policy can generalize across different objects and tasks. While this is encouraging, the policy still fails in most cases given an unseen task or environment. In this work, we propose Policy Adaptation from Foundation model Feedback (PAFF). When deploying the trained policy to a new task or a new environment, we first let the policy play with randomly generated instructions to record the demonstrations. While the execution could be wrong, we can use the pre-trained foundation models to provide feedback to relabel the demonstrations. This automatically provides new pairs of demonstration-instruction data for policy fine-tuning. We evaluate our method on a broad range of experiments with the focus on generalization on unseen objects, unseen tasks, unseen environments, and sim-to-real transfer. We show PAFF improves baselines by a large margin in all cases. Our project page is available at https://geyuying.github.io/PAFF/


Learning Transferable Spatiotemporal Representations from Natural Script Knowledge

arXiv.org Artificial Intelligence

Pre-training on large-scale video data has become a common recipe for learning transferable spatiotemporal representations in recent years. Despite some progress, existing methods are mostly limited to highly curated datasets (e.g., K400) and exhibit unsatisfactory out-of-the-box representations. We argue that it is due to the fact that they only capture pixel-level knowledge rather than spatiotemporal semantics, which hinders further progress in video understanding. Inspired by the great success of image-text pre-training (e.g., CLIP), we take the first step to exploit language semantics to boost transferable spatiotemporal representation learning. We introduce a new pretext task, Turning to Video for Transcript Sorting (TVTS), which sorts shuffled ASR scripts by attending to learned video representations. We do not rely on descriptive captions and learn purely from video, i.e., leveraging the natural transcribed speech knowledge to provide noisy but useful semantics over time. Our method enforces the vision model to contextualize what is happening over time so that it can re-organize the narrative transcripts, and can seamlessly apply to large-scale uncurated video data in the real world. Our method demonstrates strong out-of-the-box spatiotemporal representations on diverse benchmarks, e.g., +13.6% gains over VideoMAE on SSV2 via linear probing. The code is available at https://github.com/TencentARC/TVTS.