Goto

Collaborating Authors

 Gaspers, Serge


Minesweeper with Limited Moves

AAAI Conferences

We consider the problem of playing Minesweeper with a limited number of moves: Given a partially revealed board, a number of available clicks k, and a target probability p, can we win with probability p. We win if we do not click on a mine, and, after our sequence of at most k clicks (which reveal information about the neighboring squares) can correctly identify the placement of all mines. We make the assumption, that, at all times, all placements of mines consistent with the currently revealed squares are equiprobable. Our main results are that the problem is PSPACE-complete, and it remains PSPACE-complete when p is a constant, in particular when p = 1. When k = 0 (i.e., we are not allowed to click anywhere), the problem is PP-complete in general, but co-NP-complete when p is a constant, and in particular when p = 1.


Backdoors into Heterogeneous Classes of SAT and CSP

arXiv.org Artificial Intelligence

In this paper we extend the classical notion of strong and weak backdoor sets for SAT and CSP by allowing that different instantiations of the backdoor variables result in instances that belong to different base classes; the union of the base classes forms a heterogeneous base class. Backdoor sets to heterogeneous base classes can be much smaller than backdoor sets to homogeneous ones, hence they are much more desirable but possibly harder to find. We draw a detailed complexity landscape for the problem of detecting strong and weak backdoor sets into heterogeneous base classes for SAT and CSP.


Equilibria Under the Probabilistic Serial Rule

AAAI Conferences

The probabilistic serial (PS) rule is a prominent randomized rule for assigning indivisible goods to agents. Although it is well known for its good fairness and welfare properties, it is not strategyproof. In view of this, we address several fundamental questions regarding equilibria under PS. Firstly, we show that Nash deviations under the PS rule can cycle. Despite the possibilities of cycles, we prove that a pure Nash equilibrium is guaranteed to exist under the PS rule. We then show that verifying whether a given profile is a pure Nash equilibrium is coNP-complete, and computing a pure Nash equilibrium is NP-hard. For two agents, we present a linear-time algorithm to compute a pure Nash equilibrium which yields the same assignment as the truthful profile. Finally, we conduct experiments to evaluate the quality of the equilibria that exist under the PS rule, finding that the vast majority of pure Nash equilibria yield social welfare that is at least that of the truthful profile.


Backdoors into Heterogeneous Classes of SAT and CSP

AAAI Conferences

Backdoor sets represent clever reasoning shortcuts through the search space for SAT and CSP. By instantiating the backdoor variables one reduces the given instance to several easy instances that belong to a tractable class.The overall time needed to solve the instance is exponential in the size of the backdoor set, hence it is a challenging problem to find a small backdoor set if one exists; over the last years this problem has been subject of intensive research. In this paper we extend the classical notion of a strong backdoor set by allowing that different instantiations of the backdoor variables result in instances that belong to different base classes; the union of the base classes forms a heterogeneous base class. Backdoor sets to heterogeneous base classes can be much smaller than backdoor sets to homogeneous ones, hence they are much more desirable but possibly harder to find. We draw a detailed complexity landscape for the problem of detecting strong backdoor sets into heterogeneous base classes for SAT and CSP. We provide algorithms that establish fixed-parameter tractability under natural parameterizations, and we contrast the tractability results with hardness results that pinpoint the theoretical limits. Our results apply to the current state-of-the-art of tractable classes of CSP and SAT that are definable by restricting the constraint language.


Fixing a Balanced Knockout Tournament

AAAI Conferences

Balanced knockout tournaments are one of the most common formats for sports competitions, and are also used in elections and decision-making. We consider the computational problem of finding the optimal draw for a particular player in such a tournament. The problem has generated considerable research within AI in recent years. We prove that checking whether there exists a draw in which a player wins is NP-complete, thereby settling an outstanding open problem. Our main result has a number of interesting implications on related counting and approximation problems. We present a memoization-based algorithm for the problem that is faster than previous approaches. Moreover, we highlight two natural cases that can be solved in polynomial time. All of our results also hold for the more general problem of counting the number of draws in which a given player is the winner.


Guarantees and Limits of Preprocessing in Constraint Satisfaction and Reasoning

arXiv.org Artificial Intelligence

We present a first theoretical analysis of the power of polynomial-time preprocessing for important combinatorial problems from various areas in AI. We consider problems from Constraint Satisfaction, Global Constraints, Satisfiability, Nonmonotonic and Bayesian Reasoning under structural restrictions. All these problems involve two tasks: (i) identifying the structure in the input as required by the restriction, and (ii) using the identified structure to solve the reasoning task efficiently. We show that for most of the considered problems, task (i) admits a polynomial-time preprocessing to a problem kernel whose size is polynomial in a structural problem parameter of the input, in contrast to task (ii) which does not admit such a reduction to a problem kernel of polynomial size, subject to a complexity theoretic assumption. As a notable exception we show that the consistency problem for the AtMost-NValue constraint admits a polynomial kernel consisting of a quadratic number of variables and domain values. Our results provide a firm worst-case guarantees and theoretical boundaries for the performance of polynomial-time preprocessing algorithms for the considered problems.


On the Complexity of Global Scheduling Constraints under Structural Restrictions

AAAI Conferences

We investigate the computational complexity of two global constraints, CUMULATIVE and INTERDISTANCE. These are key constraints in modeling and solving scheduling problems. Enforcing domain consistency on both is NP-hard. However, restricted versions of these constraints are often sufficient in practice. Some examples include scheduling problems with a large number of similar tasks, or tasks sparsely distributed over time. Another example is runway sequencing problems in air-traffic control, where landing periods have a regular pattern. Such cases can be characterized in terms of structural restrictions on the constraints. We identify a number of such structural restrictions and investigate how they impact the computational complexity of propagating these global constraints. In particular, we prove that such restrictions often make propagation tractable.


Ties Matter: Complexity of Manipulation when Tie-Breaking with a Random Vote

AAAI Conferences

We study the impact on strategic voting of tie-breaking by means of considering the order of tied candidates within a random vote. We compare this to another non deterministic tie-breaking rule where we simply choose candidate uniformly at random. In general, we demonstrate that there is no connection between the computational complexity of computing a manipulating vote with the two different types of tie-breaking. However, we prove that for some scoring rules, the computational complexity of computing a manipulation can increase from polynomial to NP-hard. We also discuss the relationship with the computational complexity of computing a manipulating vote when we ask for a candidate to be the unique winner, or to be among the set of co-winners.


Possible and Necessary Winner Problem in Social Polls

arXiv.org Artificial Intelligence

Social networks are increasingly being used to conduct polls. We introduce a simple model of such social polling. We suppose agents vote sequentially, but the order in which agents choose to vote is not necessarily fixed. We also suppose that an agent's vote is influenced by the votes of their friends who have already voted. Despite its simplicity, this model provides useful insights into a number of areas including social polling, sequential voting, and manipulation. We prove that the number of candidates and the network structure affect the computational complexity of computing which candidate necessarily or possibly can win in such a social poll. For social networks with bounded treewidth and a bounded number of candidates, we provide polynomial algorithms for both problems. In other cases, we prove that computing which candidates necessarily or possibly win are computationally intractable.


On Finding Optimal Polytrees

arXiv.org Artificial Intelligence

Inferring probabilistic networks from data is a notoriously difficult task. Under various goodness-of-fit measures, finding an optimal network is NP-hard, even if restricted to polytrees of bounded in-degree. Polynomial-time algorithms are known only for rare special cases, perhaps most notably for branchings, that is, polytrees in which the in-degree of every node is at most one. Here, we study the complexity of finding an optimal polytree that can be turned into a branching by deleting some number of arcs or nodes, treated as a parameter. We show that the problem can be solved via a matroid intersection formulation in polynomial time if the number of deleted arcs is bounded by a constant. The order of the polynomial time bound depends on this constant, hence the algorithm does not establish fixed-parameter tractability when parameterized by the number of deleted arcs. We show that a restricted version of the problem allows fixed-parameter tractability and hence scales well with the parameter. We contrast this positive result by showing that if we parameterize by the number of deleted nodes, a somewhat more powerful parameter, the problem is not fixed-parameter tractable, subject to a complexity-theoretic assumption.