Goto

Collaborating Authors

 Garriga-Alonso, Adrià


Hypothesis Testing the Circuit Hypothesis in LLMs

arXiv.org Machine Learning

Large language models (LLMs) demonstrate surprising capabilities, but we do not understand how they are implemented. One hypothesis suggests that these capabilities are primarily executed by small subnetworks within the LLM, known as circuits. But how can we evaluate this hypothesis? In this paper, we formalize a set of criteria that a circuit is hypothesized to meet and develop a suite of hypothesis tests to evaluate how well circuits satisfy them. The criteria focus on the extent to which the LLM's behavior is preserved, the degree of localization of this behavior, and whether the circuit is minimal. We apply these tests to six circuits described in the research literature. We find that synthetic circuits -- circuits that are hard-coded in the model -- align with the idealized properties. Circuits discovered in Transformer models satisfy the criteria to varying degrees. To facilitate future empirical studies of circuits, we created the \textit{circuitry} package, a wrapper around the \textit{TransformerLens} library, which abstracts away lower-level manipulations of hooks and activations. The software is available at \url{https://github.com/blei-lab/circuitry}.


Towards Automated Circuit Discovery for Mechanistic Interpretability

arXiv.org Artificial Intelligence

Through considerable effort and intuition, several recent works have reverse-engineered nontrivial behaviors of transformer models. This paper systematizes the mechanistic interpretability process they followed. First, researchers choose a metric and dataset that elicit the desired model behavior. Then, they apply activation patching to find which abstract neural network units are involved in the behavior. By varying the dataset, metric, and units under investigation, researchers can understand the functionality of each component. We automate one of the process' steps: to identify the circuit that implements the specified behavior in the model's computational graph. We propose several algorithms and reproduce previous interpretability results to validate them. For example, the ACDC algorithm rediscovered 5/5 of the component types in a circuit in GPT-2 Small that computes the Greater-Than operation. ACDC selected 68 of the 32,000 edges in GPT-2 Small, all of which were manually found by previous work. Our code is available at https://github.com/ArthurConmy/Automatic-Circuit-Discovery.


Beyond the Imitation Game: Quantifying and extrapolating the capabilities of language models

arXiv.org Artificial Intelligence

Language models demonstrate both quantitative improvement and new qualitative capabilities with increasing scale. Despite their potentially transformative impact, these new capabilities are as yet poorly characterized. In order to inform future research, prepare for disruptive new model capabilities, and ameliorate socially harmful effects, it is vital that we understand the present and near-future capabilities and limitations of language models. To address this challenge, we introduce the Beyond the Imitation Game benchmark (BIG-bench). BIG-bench currently consists of 204 tasks, contributed by 450 authors across 132 institutions. Task topics are diverse, drawing problems from linguistics, childhood development, math, common-sense reasoning, biology, physics, social bias, software development, and beyond. BIG-bench focuses on tasks that are believed to be beyond the capabilities of current language models. We evaluate the behavior of OpenAI's GPT models, Google-internal dense transformer architectures, and Switch-style sparse transformers on BIG-bench, across model sizes spanning millions to hundreds of billions of parameters. In addition, a team of human expert raters performed all tasks in order to provide a strong baseline. Findings include: model performance and calibration both improve with scale, but are poor in absolute terms (and when compared with rater performance); performance is remarkably similar across model classes, though with benefits from sparsity; tasks that improve gradually and predictably commonly involve a large knowledge or memorization component, whereas tasks that exhibit "breakthrough" behavior at a critical scale often involve multiple steps or components, or brittle metrics; social bias typically increases with scale in settings with ambiguous context, but this can be improved with prompting.


Data augmentation in Bayesian neural networks and the cold posterior effect

arXiv.org Machine Learning

Data augmentation is a highly effective approach for improving performance in deep neural networks. The standard view is that it creates an enlarged dataset by adding synthetic data, which raises a problem when combining it with Bayesian inference: how much data are we really conditioning on? This question is particularly relevant to recent observations linking data augmentation to the cold posterior effect. We investigate various principled ways of finding a log-likelihood for augmented datasets. Our approach prescribes augmenting the same underlying image multiple times, both at test and train-time, and averaging either the logits or the predictive probabilities. Empirically, we observe the best performance with averaging probabilities. While there are interactions with the cold posterior effect, neither averaging logits or averaging probabilities eliminates it.


BNNpriors: A library for Bayesian neural network inference with different prior distributions

arXiv.org Machine Learning

Bayesian neural networks have shown great promise in many applications where calibrated uncertainty estimates are crucial and can often also lead to a higher predictive performance. However, it remains challenging to choose a good prior distribution over their weights. While isotropic Gaussian priors are often chosen in practice due to their simplicity, they do not reflect our true prior beliefs well and can lead to suboptimal performance. Our new library, BNNpriors, enables state-of-the-art Markov Chain Monte Carlo inference on Bayesian neural networks with a wide range of predefined priors, including heavy-tailed ones, hierarchical ones, and mixture priors. Moreover, it follows a modular approach that eases the design and implementation of new custom priors. It has facilitated foundational discoveries on the nature of the cold posterior effect in Bayesian neural networks and will hopefully catalyze future research as well as practical applications in this area.


Bayesian Neural Network Priors Revisited

arXiv.org Machine Learning

In a Bayesian neural network (BNN), we specify a prior p(w) over the neural network parameters, and compute the posterior distribution over parameters conditioned on training data, p(w x, y) p(y w, x)p(w)/p(y x). This procedure should give considerable advantages for reasoning about predictive uncertainty, which is especially relevant in the small-data setting. Crucially, to perform Bayesian inference, we need to choose a prior that accurately reflects our beliefs about the parameters before seeing any data (Bayes, 1763; Gelman et al., 2013). However, the most common choice of the prior for BNN weights is the simplest one: the isotropic Gaussian. Isotropic Gaussians are used across almost all fields of Bayesian deep learning, ranging from variational inference (Blundell et al., 2015; Dusenberry et al., 2020), to sampling-based inference (Zhang et al., 2019), and even to infinite networks (Lee et al., 2017; Garriga-Alonso et al., 2019). This is troubling, since isotropic Gaussian priors are almost certainly not the best choice. Indeed, despite the progress on more accurate and efficient inference procedures, in most settings, the posterior predictive of BNNs using a Gaussian prior still leads to worse predictive performance than a baseline obtained by training the network with standard stochastic gradient descent (SGD) (e.g., Zhang et al., 2019; Heek & Kalchbrenner, 2019; Wenzel et al., 2020a). However, it has been shown that the performance of BNNs can be improved by artificially reducing posterior uncertainty using "cold posteriors" (Wenzel et al., 2020a).


Exact Langevin Dynamics with Stochastic Gradients

arXiv.org Machine Learning

Stochastic gradient Markov Chain Monte Carlo algorithms are popular samplers for approximate inference, but they are generally biased. We show that many recent versions of these methods (e.g. Chen et al. (2014)) cannot be corrected using Metropolis-Hastings rejection sampling, because their acceptance probability is always zero. We can fix this by employing a sampler with realizable backwards trajectories, such as Gradient-Guided Monte Carlo (Horowitz, 1991), which generalizes stochastic gradient Langevin dynamics (Welling and Teh, 2011) and Hamiltonian Monte Carlo. We show that this sampler can be used with stochastic gradients, yielding nonzero acceptance probabilities, which can be computed even across multiple steps.


Correlated Weights in Infinite Limits of Deep Convolutional Neural Networks

arXiv.org Machine Learning

Infinite width limits of deep neural networks often have tractable forms. They have been used to analyse the behaviour of finite networks, as well as being useful methods in their own right. When investigating infinitely wide CNNs it was observed that the correlations arising from spatial weight sharing disappear in the infinite limit. This is undesirable, as spatial correlation is the main motivation behind CNNs. We show that the loss of this property is not a consequence of the infinite limit, but rather of choosing an independent weight prior. Correlating the weights maintains the correlations in the activations. Varying the amount of correlation interpolates between independent-weight limits and mean-pooling. Empirical evaluation of the infinitely wide network shows that optimal performance is achieved between the extremes, indicating that correlations can be useful.


Understanding Variational Inference in Function-Space

arXiv.org Machine Learning

Recent work has attempted to directly approximate the `function-space' or predictive posterior distribution of Bayesian models, without approximating the posterior distribution over the parameters. This is appealing in e.g. Bayesian neural networks, where we only need the former, and the latter is hard to represent. In this work, we highlight some advantages and limitations of employing the Kullback-Leibler divergence in this setting. For example, we show that minimizing the KL divergence between a wide class of parametric distributions and the posterior induced by a (non-degenerate) Gaussian process prior leads to an ill-defined objective function. Then, we propose (featurized) Bayesian linear regression as a benchmark for `function-space' inference methods that directly measures approximation quality. We apply this methodology to assess aspects of the objective function and inference scheme considered in Sun, Zhang, Shi, and Grosse (2018), emphasizing the quality of approximation to Bayesian inference as opposed to predictive performance.


Deep Convolutional Networks as shallow Gaussian Processes

arXiv.org Machine Learning

We show that the output of a (residual) convolutional neural network (CNN) with an appropriate prior over the weights and biases is a Gaussian process (GP) in the limit of infinitely many convolutional filters, extending similar results for dense networks. For a CNN, the equivalent kernel can be computed exactly and, unlike "deep kernels", has very few parameters: only the hyperparameters of the original CNN. Further, we show that this kernel has two properties that allow it to be computed efficiently; the cost of evaluating the kernel for a pair of images is similar to a single forward pass through the original CNN with only one filter per layer. The kernel equivalent to a 32-layer ResNet obtains 0.84% classification error on MNIST, a new record for GPs with a comparable number of parameters.