Garland, Michael
Understanding the Effect of the Long Tail on Neural Network Compression
Dam, Harvey, Joseph, Vinu, Bhaskara, Aditya, Gopalakrishnan, Ganesh, Muralidharan, Saurav, Garland, Michael
Network compression is now a mature sub-field of neural network research: over the last decade, significant progress has been made towards reducing the size of models and speeding up inference, while maintaining the classification accuracy. However, many works have observed that focusing on just the overall accuracy can be misguided. E.g., it has been shown that mismatches between the full and compressed models can be biased towards under-represented classes. This raises the important research question, can we achieve network compression while maintaining "semantic equivalence" with the original network? In this work, we study this question in the context of the "long tail" phenomenon in computer vision datasets observed by Feldman, et al. They argue that memorization of certain inputs (appropriately defined) is essential to achieving good generalization. As compression limits the capacity of a network (and hence also its ability to memorize), we study the question: are mismatches between the full and compressed models correlated with the memorized training data? We present positive evidence in this direction for image classification tasks, by considering different base architectures and compression schemes.
ArctyrEX : Accelerated Encrypted Execution of General-Purpose Applications
Gouert, Charles, Joseph, Vinu, Dalton, Steven, Augonnet, Cedric, Garland, Michael, Tsoutsos, Nektarios Georgios
Fully Homomorphic Encryption (FHE) is a cryptographic method that guarantees the privacy and security of user data during computation. FHE algorithms can perform unlimited arithmetic computations directly on encrypted data without decrypting it. Thus, even when processed by untrusted systems, confidential data is never exposed. In this work, we develop new techniques for accelerated encrypted execution and demonstrate the significant performance advantages of our approach. Our current focus is the Fully Homomorphic Encryption over the Torus (CGGI) scheme, which is a current state-of-the-art method for evaluating arbitrary functions in the encrypted domain. CGGI represents a computation as a graph of homomorphic logic gates and each individual bit of the plaintext is transformed into a polynomial in the encrypted domain. Arithmetic on such data becomes very expensive: operations on bits become operations on entire polynomials. Therefore, evaluating even relatively simple nonlinear functions, such as a sigmoid, can take thousands of seconds on a single CPU thread. Using our novel framework for end-to-end accelerated encrypted execution called ArctyrEX, developers with no knowledge of complex FHE libraries can simply describe their computation as a C program that is evaluated over $40\times$ faster on an NVIDIA DGX A100 and $6\times$ faster with a single A100 relative to a 256-threaded CPU baseline.
Reliable Model Compression via Label-Preservation-Aware Loss Functions
Joseph, Vinu, Siddiqui, Shoaib Ahmed, Bhaskara, Aditya, Gopalakrishnan, Ganesh, Muralidharan, Saurav, Garland, Michael, Ahmed, Sheraz, Dengel, Andreas
Model compression is a ubiquitous tool that brings the power of modern deep learning to edge devices with power and latency constraints. The goal of model compression is to take a large reference neural network and output a smaller and less expensive compressed network that is functionally equivalent to the reference. Compression typically involves pruning and/or quantization, followed by re-training to maintain the reference accuracy. However, it has been observed that compression can lead to a considerable mismatch in the labels produced by the reference and the compressed models, resulting in bias and unreliability. To combat this, we present a framework that uses a teacher-student learning paradigm to better preserve labels. We investigate the role of additional terms to the loss function and show how to automatically tune the associated parameters. We demonstrate the effectiveness of our approach both quantitatively and qualitatively on multiple compression schemes and accuracy recovery algorithms using a set of 8 different real-world network architectures. We obtain a significant reduction of up to 4.1X in the number of mismatches between the compressed and reference models, and up to 5.7X in cases where the reference model makes the correct prediction.
GPU-Accelerated Atari Emulation for Reinforcement Learning
Dalton, Steven, Frosio, Iuri, Garland, Michael
We designed and implemented a CUDA port of the Atari Learning Environment (ALE), a system for developing and evaluating deep reinforcement algorithms using Atari games. Our CUDA Learning Environment (CuLE) overcomes many limitations of existing CPU-based Atari emulators and scales naturally to multi-GPU systems. It leverages the parallelization capability of GPUs to run thousands of Atari games simultaneously; by rendering frames directly on the GPU, CuLE avoids the bottleneck arising from the limited CPU-GPU communication bandwidth. As a result, CuLE is able to generate between 40M and 190M frames per hour using a single GPU, a finding that could be previously achieved only through a cluster of CPUs. We demonstrate the advantages of CuLE by effectively training agents with traditional deep reinforcement learning algorithms and measuring the utilization and throughput of the GPU. Our analysis further highlights the differences in the data generation pattern for emulators running on CPUs or GPUs. CuLE is available at https://github.com/NVLabs/cule .