Garlan, David
Error-Driven Uncertainty Aware Training
Mendes, Pedro, Romano, Paolo, Garlan, David
Neural networks are often overconfident about their predictions, which undermines their reliability and trustworthiness. In this work, we present a novel technique, named Error-Driven Uncertainty Aware Training (EUAT), which aims to enhance the ability of neural models to estimate their uncertainty correctly, namely to be highly uncertain when they output inaccurate predictions and low uncertain when their output is accurate. The EUAT approach operates during the model's training phase by selectively employing two loss functions depending on whether the training examples are correctly or incorrectly predicted by the model. This allows for pursuing the twofold goal of i) minimizing model uncertainty for correctly predicted inputs and ii) maximizing uncertainty for mispredicted inputs, while preserving the model's misprediction rate. We evaluate EUAT using diverse neural models and datasets in the image recognition domains considering both non-adversarial and adversarial settings. The results show that EUAT outperforms existing approaches for uncertainty estimation (including other uncertainty-aware training techniques, calibration, ensembles, and DEUP) by providing uncertainty estimates that not only have higher quality when evaluated via statistical metrics (e.g., correlation with residuals) but also when employed to build binary classifiers that decide whether the model's output can be trusted or not and under distributional data shifts.
CURE: Simulation-Augmented Auto-Tuning in Robotics
Hossen, Md Abir, Kharade, Sonam, O'Kane, Jason M., Schmerl, Bradley, Garlan, David, Jamshidi, Pooyan
Robotic systems are typically composed of various subsystems, such as localization and navigation, each encompassing numerous configurable components (e.g., selecting different planning algorithms). Once an algorithm has been selected for a component, its associated configuration options must be set to the appropriate values. Configuration options across the system stack interact non-trivially. Finding optimal configurations for highly configurable robots to achieve desired performance poses a significant challenge due to the interactions between configuration options across software and hardware that result in an exponentially large and complex configuration space. These challenges are further compounded by the need for transferability between different environments and robotic platforms. Data efficient optimization algorithms (e.g., Bayesian optimization) have been increasingly employed to automate the tuning of configurable parameters in cyber-physical systems. However, such optimization algorithms converge at later stages, often after exhausting the allocated budget (e.g., optimization steps, allotted time) and lacking transferability. This paper proposes CURE -- a method that identifies causally relevant configuration options, enabling the optimization process to operate in a reduced search space, thereby enabling faster optimization of robot performance. CURE abstracts the causal relationships between various configuration options and robot performance objectives by learning a causal model in the source (a low-cost environment such as the Gazebo simulator) and applying the learned knowledge to perform optimization in the target (e.g., Turtlebot 3 physical robot). We demonstrate the effectiveness and transferability of CURE by conducting experiments that involve varying degrees of deployment changes in both physical robots and simulation.
Hyper-parameter Tuning for Adversarially Robust Models
Mendes, Pedro, Romano, Paolo, Garlan, David
This work focuses on the problem of hyper-parameter tuning (HPT) for robust (i.e., adversarially trained) models, shedding light on the new challenges and opportunities arising during the HPT process for robust models. To this end, we conduct an extensive experimental study based on 3 popular deep models, in which we explore exhaustively 9 (discretized) HPs, 2 fidelity dimensions, and 2 attack bounds, for a total of 19208 configurations (corresponding to 50 thousand GPU hours). Through this study, we show that the complexity of the HPT problem is further exacerbated in adversarial settings due to the need to independently tune the HPs used during standard and adversarial training: succeeding in doing so (i.e., adopting different HP settings in both phases) can lead to a reduction of up to 80% and 43% of the error for clean and adversarial inputs, respectively. On the other hand, we also identify new opportunities to reduce the cost of HPT for robust models. Specifically, we propose to leverage cheap adversarial training methods to obtain inexpensive, yet highly correlated, estimations of the quality achievable using state-of-the-art methods. We show that, by exploiting this novel idea in conjunction with a recent multi-fidelity optimizer (taKG), the efficiency of the HPT process can be enhanced by up to 2.1 .
CaRE: Finding Root Causes of Configuration Issues in Highly-Configurable Robots
Hossen, Md Abir, Kharade, Sonam, Schmerl, Bradley, Cámara, Javier, O'Kane, Jason M., Czaplinski, Ellen C., Dzurilla, Katherine A., Garlan, David, Jamshidi, Pooyan
Robotic systems have subsystems with a combinatorially large configuration space and hundreds or thousands of possible software and hardware configuration options interacting non-trivially. The configurable parameters are set to target specific objectives, but they can cause functional faults when incorrectly configured. Finding the root cause of such faults is challenging due to the exponentially large configuration space and the dependencies between the robot's configuration settings and performance. This paper proposes CaRE -- a method for diagnosing the root cause of functional faults through the lens of causality. CaRE abstracts the causal relationships between various configuration options and the robot's performance objectives by learning a causal structure and estimating the causal effects of options on robot performance indicators. We demonstrate CaRE's efficacy by finding the root cause of the observed functional faults and validating the diagnosed root cause by conducting experiments in both physical robots (Husky and Turtlebot 3) and in simulation (Gazebo). Furthermore, we demonstrate that the causal models learned from robots in simulation (e.g., Husky in Gazebo) are transferable to physical robots across different platforms (e.g., Husky and Turtlebot 3).
HyperJump: Accelerating HyperBand via Risk Modelling
Mendes, Pedro, Casimiro, Maria, Romano, Paolo, Garlan, David
In the literature on hyper-parameter tuning, a number of recent solutions rely on low-fidelity observations (e.g., training with sub-sampled datasets) in order to efficiently identify promising configurations to be then tested via high-fidelity observations (e.g., using the full dataset). Among these, HyperBand is arguably one of the most popular solutions, due to its efficiency and theoretically provable robustness. In this work, we introduce HyperJump, a new approach that builds on HyperBand's robust search strategy and complements it with novel model-based risk analysis techniques that accelerate the search by skipping the evaluation of low risk configurations, i.e., configurations that are likely to be eventually discarded by HyperBand. We evaluate HyperJump on a suite of hyper-parameter optimization problems and show that it provides over one-order of magnitude speed-ups, both in sequential and parallel deployments, on a variety of deep-learning, kernel-based learning, and neural architectural search problems when compared to HyperBand and to several state-of-the-art optimizers.
Tradeoff-Focused Contrastive Explanation for MDP Planning
Sukkerd, Roykrong, Simmons, Reid, Garlan, David
End-users' trust in automated agents is important as automated decision-making and planning is increasingly used in many aspects of people's lives. In real-world applications of planning, multiple optimization objectives are often involved. Thus, planning agents' decisions can involve complex tradeoffs among competing objectives. It can be difficult for the end-users to understand why an agent decides on a particular planning solution on the basis of its objective values. As a result, the users may not know whether the agent is making the right decisions, and may lack trust in it. In this work, we contribute an approach, based on contrastive explanation, that enables a multi-objective MDP planning agent to explain its decisions in a way that communicates its tradeoff rationale in terms of the domain-level concepts. We conduct a human subjects experiment to evaluate the effectiveness of our explanation approach in a mobile robot navigation domain. The results show that our approach significantly improves the users' understanding, and confidence in their understanding, of the tradeoff rationale of the planning agent.
Machine Learning Meets Quantitative Planning: Enabling Self-Adaptation in Autonomous Robots
Jamshidi, Pooyan, Cámara, Javier, Schmerl, Bradley, Kästner, Christian, Garlan, David
Modern cyber-physical systems (e.g., robotics systems) are typically composed of physical and software components, the characteristics of which are likely to change over time. Assumptions about parts of the system made at design time may not hold at run time, especially when a system is deployed for long periods (e.g., over decades). Self-adaptation is designed to find reconfigurations of systems to handle such run-time inconsistencies. Planners can be used to find and enact optimal reconfigurations in such an evolving context. However, for systems that are highly configurable, such planning becomes intractable due to the size of the adaptation space. To overcome this challenge, in this paper we explore an approach that (a) uses machine learning to find Pareto-optimal configurations without needing to explore every configuration and (b) restricts the search space to such configurations to make planning tractable. We explore this in the context of robot missions that need to consider task timeliness and energy consumption. An independent evaluation shows that our approach results in high-quality adaptation plans in uncertain and adversarial environments.