Goto

Collaborating Authors

 Garg, Vineet


Device-Directed Speech Detection for Follow-up Conversations Using Large Language Models

arXiv.org Artificial Intelligence

Follow-up conversations with virtual assistants (VAs) enable a user to seamlessly interact with a VA without the need to repeatedly invoke it using a keyword (after the first query). Therefore, accurate Device-directed Speech Detection (DDSD) from the follow-up queries is critical for enabling naturalistic user experience. To this end, we explore the notion of Large Language Models (LLMs) and model the first query when making inference about the follow-ups (based on the ASR-decoded text), via prompting of a pretrained LLM, or by adapting a binary classifier on top of the LLM. In doing so, we also exploit the ASR uncertainty when designing the LLM prompts. We show on the real-world dataset of follow-up conversations that this approach yields large gains (20-40% reduction in false alarms at 10% fixed false rejects) due to the joint modeling of the previous speech context and ASR uncertainty, compared to when follow-ups are modeled alone.


Comparative Analysis of Personalized Voice Activity Detection Systems: Assessing Real-World Effectiveness

arXiv.org Artificial Intelligence

Voice activity detection (VAD) is a critical component in various applications such as speech recognition, speech enhancement, and hands-free communication systems. With the increasing demand for personalized and context-aware technologies, the need for effective personalized VAD systems has become paramount. In this paper, we present a comparative analysis of Personalized Voice Activity Detection (PVAD) systems to assess their real-world effectiveness. We introduce a comprehensive approach to assess PVAD systems, incorporating various performance metrics such as frame-level and utterance-level error rates, detection latency and accuracy, alongside user-level analysis. Through extensive experimentation and evaluation, we provide a thorough understanding of the strengths and limitations of various PVAD variants. This paper advances the understanding of PVAD technology by offering insights into its efficacy and viability in practical applications using a comprehensive set of metrics.


Streaming Anchor Loss: Augmenting Supervision with Temporal Significance

arXiv.org Artificial Intelligence

Streaming neural network models for fast frame-wise responses to various speech and sensory signals are widely adopted on resource-constrained platforms. Hence, increasing the learning capacity of such streaming models (i.e., by adding more parameters) to improve the predictive power may not be viable for real-world tasks. In this work, we propose a new loss, Streaming Anchor Loss (SAL), to better utilize the given learning capacity by encouraging the model to learn more from essential frames. More specifically, our SAL and its focal variations dynamically modulate the frame-wise cross entropy loss based on the importance of the corresponding frames so that a higher loss penalty is assigned for frames within the temporal proximity of semantically critical events. Therefore, our loss ensures that the model training focuses on predicting the relatively rare but task-relevant frames. Experimental results with standard lightweight convolutional and recurrent streaming networks on three different speech based detection tasks demonstrate that SAL enables the model to learn the overall task more effectively with improved accuracy and latency, without any additional data, model parameters, or architectural changes.


Leveraging Large Language Models for Exploiting ASR Uncertainty

arXiv.org Artificial Intelligence

While large language models excel in a variety of natural language processing (NLP) tasks, to perform well on spoken language understanding (SLU) tasks, they must either rely on off-the-shelf automatic speech recognition (ASR) systems for transcription, or be equipped with an in-built speech modality. This work focuses on the former scenario, where LLM's accuracy on SLU tasks is constrained by the accuracy of a fixed ASR system on the spoken input. Specifically, we tackle speech-intent classification task, where a high word-error-rate can limit the LLM's ability to understand the spoken intent. Instead of chasing a high accuracy by designing complex or specialized architectures regardless of deployment costs, we seek to answer how far we can go without substantially changing the underlying ASR and LLM, which can potentially be shared by multiple unrelated tasks. To this end, we propose prompting the LLM with an n-best list of ASR hypotheses instead of only the error-prone 1-best hypothesis. We explore prompt-engineering to explain the concept of n-best lists to the LLM; followed by the finetuning of Low-Rank Adapters on the downstream tasks. Our approach using n-best lists proves to be effective on a device-directed speech detection task as well as on a keyword spotting task, where systems using n-best list prompts outperform those using 1-best ASR hypothesis; thus paving the way for an efficient method to exploit ASR uncertainty via LLMs for speech-based applications.