Goto

Collaborating Authors

 Garg, Muskan


Reliability Analysis of Psychological Concept Extraction and Classification in User-penned Text

arXiv.org Artificial Intelligence

The social NLP research community witness a recent surge in the computational advancements of mental health analysis to build responsible AI models for a complex interplay between language use and self-perception. Such responsible AI models aid in quantifying the psychological concepts from user-penned texts on social media. On thinking beyond the low-level (classification) task, we advance the existing binary classification dataset, towards a higher-level task of reliability analysis through the lens of explanations, posing it as one of the safety measures. We annotate the LoST dataset to capture nuanced textual cues that suggest the presence of low self-esteem in the posts of Reddit users. We further state that the NLP models developed for determining the presence of low self-esteem, focus more on three types of textual cues: (i) Trigger: words that triggers mental disturbance, (ii) LoST indicators: text indicators emphasizing low self-esteem, and (iii) Consequences: words describing the consequences of mental disturbance. We implement existing classifiers to examine the attention mechanism in pre-trained language models (PLMs) for a domain-specific psychology-grounded task. Our findings suggest the need of shifting the focus of PLMs from Trigger and Consequences to a more comprehensive explanation, emphasizing LoST indicators while determining low self-esteem in Reddit posts.


InterPrompt: Interpretable Prompting for Interrelated Interpersonal Risk Factors in Reddit Posts

arXiv.org Artificial Intelligence

Mental health professionals and clinicians have observed the upsurge of mental disorders due to Interpersonal Risk Factors (IRFs). To simulate the human-in-the-loop triaging scenario for early detection of mental health disorders, we recognized textual indications to ascertain these IRFs : Thwarted Belongingness (TBe) and Perceived Burdensomeness (PBu) within personal narratives. In light of this, we use N-shot learning with GPT-3 model on the IRF dataset, and underscored the importance of fine-tuning GPT-3 model to incorporate the context-specific sensitivity and the interconnectedness of textual cues that represent both IRFs. In this paper, we introduce an Interpretable Prompting (InterPrompt)} method to boost the attention mechanism by fine-tuning the GPT-3 model. This allows a more sophisticated level of language modification by adjusting the pre-trained weights. Our model learns to detect usual patterns and underlying connections across both the IRFs, which leads to better system-level explainability and trustworthiness. The results of our research demonstrate that all four variants of GPT-3 model, when fine-tuned with InterPrompt, perform considerably better as compared to the baseline methods, both in terms of classification and explanation generation.


NBIAS: A Natural Language Processing Framework for Bias Identification in Text

arXiv.org Artificial Intelligence

Bias in textual data can lead to skewed interpretations and outcomes when the data is used. These biases could perpetuate stereotypes, discrimination, or other forms of unfair treatment. An algorithm trained on biased data may end up making decisions that disproportionately impact a certain group of people. Therefore, it is crucial to detect and remove these biases to ensure the fair and ethical use of data. To this end, we develop a comprehensive and robust framework NBIAS that consists of four main layers: data, corpus construction, model development and an evaluation layer. The dataset is constructed by collecting diverse data from various domains, including social media, healthcare, and job hiring portals. As such, we applied a transformer-based token classification model that is able to identify bias words/ phrases through a unique named entity BIAS. In the evaluation procedure, we incorporate a blend of quantitative and qualitative measures to gauge the effectiveness of our models. We achieve accuracy improvements ranging from 1% to 8% compared to baselines. We are also able to generate a robust understanding of the model functioning. The proposed approach is applicable to a variety of biases and contributes to the fair and ethical use of textual data.


WellXplain: Wellness Concept Extraction and Classification in Reddit Posts for Mental Health Analysis

arXiv.org Artificial Intelligence

During the current mental health crisis, the importance of identifying potential indicators of mental issues from social media content has surged. Overlooking the multifaceted nature of mental and social well-being can have detrimental effects on one's mental state. In traditional therapy sessions, professionals manually pinpoint the origins and outcomes of underlying mental challenges, a process both detailed and time-intensive. We introduce an approach to this intricate mental health analysis by framing the identification of wellness dimensions in Reddit content as a wellness concept extraction and categorization challenge. We've curated a unique dataset named WELLXPLAIN, comprising 3,092 entries and totaling 72,813 words. Drawing from Halbert L. Dunn's well-regarded wellness theory, our team formulated an annotation framework along with guidelines. This dataset also includes human-marked textual segments, offering clear reasoning for decisions made in the wellness concept categorization process. Our aim in publishing this dataset and analyzing initial benchmarks is to spearhead the creation of advanced language models tailored for healthcare-focused concept extraction and categorization.


NLP as a Lens for Causal Analysis and Perception Mining to Infer Mental Health on Social Media

arXiv.org Artificial Intelligence

Interactions among humans on social media often convey intentions behind their actions, yielding a psychological language resource for Mental Health Analysis (MHA) of online users. The success of Computational Intelligence Techniques (CIT) for inferring mental illness from such social media resources points to NLP as a lens for causal analysis and perception mining. However, we argue that more consequential and explainable research is required for optimal impact on clinical psychology practice and personalized mental healthcare. To bridge this gap, we posit two significant dimensions: (1) Causal analysis to illustrate a cause and effect relationship in the user generated text; (2) Perception mining to infer psychological perspectives of social effects on online users intentions. Within the scope of Natural Language Processing (NLP), we further explore critical areas of inquiry associated with these two dimensions, specifically through recent advancements in discourse analysis. This position paper guides the community to explore solutions in this space and advance the state of practice in developing conversational agents for inferring mental health from social media. We advocate for a more explainable approach toward modeling computational psychology problems through the lens of language as we observe an increased number of research contributions in dataset and problem formulation for causal relation extraction and perception enhancements while inferring mental states.


LOST: A Mental Health Dataset of Low Self-esteem in Reddit Posts

arXiv.org Artificial Intelligence

Low self-esteem and interpersonal needs (i.e., thwarted belongingness (TB) and perceived burdensomeness (PB)) have a major impact on depression and suicide attempts. Individuals seek social connectedness on social media to boost and alleviate their loneliness. Social media platforms allow people to express their thoughts, experiences, beliefs, and emotions. Prior studies on mental health from social media have focused on symptoms, causes, and disorders. Whereas an initial screening of social media content for interpersonal risk factors and low self-esteem may raise early alerts and assign therapists to at-risk users of mental disturbance. Standardized scales measure self-esteem and interpersonal needs from questions created using psychological theories. In the current research, we introduce a psychology-grounded and expertly annotated dataset, LoST: Low Self esTeem, to study and detect low self-esteem on Reddit. Through an annotation approach involving checks on coherence, correctness, consistency, and reliability, we ensure gold-standard for supervised learning. We present results from different deep language models tested using two data augmentation techniques. Our findings suggest developing a class of language models that infuses psychological and clinical knowledge.


Augmenting Reddit Posts to Determine Wellness Dimensions impacting Mental Health

arXiv.org Artificial Intelligence

Amid ongoing health crisis, there is a growing necessity to discern possible signs of Wellness Dimensions (WD) manifested in self-narrated text. As the distribution of WD on social media data is intrinsically imbalanced, we experiment the generative NLP models for data augmentation to enable further improvement in the pre-screening task of classifying WD. To this end, we propose a simple yet effective data augmentation approach through prompt-based Generative NLP models, and evaluate the ROUGE scores and syntactic/semantic similarity among existing interpretations and augmented data. Our approach with ChatGPT model surpasses all the other methods and achieves improvement over baselines such as Easy-Data Augmentation and Backtranslation. Introducing data augmentation to generate more training samples and balanced dataset, results in the improved F-score and the Matthew's Correlation Coefficient for upto 13.11% and 15.95%, respectively.


LonXplain: Lonesomeness as a Consequence of Mental Disturbance in Reddit Posts

arXiv.org Artificial Intelligence

Social media is a potential source of information that infers latent mental states through Natural Language Processing (NLP). While narrating real-life experiences, social media users convey their feeling of loneliness or isolated lifestyle, impacting their mental well-being. Existing literature on psychological theories points to loneliness as the major consequence of interpersonal risk factors, propounding the need to investigate loneliness as a major aspect of mental disturbance. We formulate lonesomeness detection in social media posts as an explainable binary classification problem, discovering the users at-risk, suggesting the need of resilience for early control. To the best of our knowledge, there is no existing explainable dataset, i.e., one with human-readable, annotated text spans, to facilitate further research and development in loneliness detection causing mental disturbance [9]. In this work, three experts: a senior clinical psychologist, a rehabilitation counselor, and a social NLP researcher define annotation schemes and perplexity guidelines to mark the presence or absence of lonesomeness, along with the marking of textspans in original posts as explanation, in 3, 521 Reddit posts. We expect the public release of our dataset, LonXplain, and traditional classifiers as baselines via GitHub.


An Annotated Dataset for Explainable Interpersonal Risk Factors of Mental Disturbance in Social Media Posts

arXiv.org Artificial Intelligence

With a surge in identifying suicidal risk and its severity in social media posts, we argue that a more consequential and explainable research is required for optimal impact on clinical psychology practice and personalized mental healthcare. The success of computational intelligence techniques for inferring mental illness from social media resources, points to natural language processing as a lens for determining Interpersonal Risk Factors (IRF) in human writings. Motivated with limited availability of datasets for social NLP research community, we construct and release a new annotated dataset with human-labelled explanations and classification of IRF affecting mental disturbance on social media: (i) Thwarted Belongingness (TBe), and (ii) Perceived Burdensomeness (PBu). We establish baseline models on our dataset facilitating future research directions to develop real-time personalized AI models by detecting patterns of TBe and PBu in emotional spectrum of user's historical social media profile.


Towards Explainable and Safe Conversational Agents for Mental Health: A Survey

arXiv.org Artificial Intelligence

Virtual Mental Health Assistants (VMHAs) are seeing continual advancements to support the overburdened global healthcare system that gets 60 million primary care visits, and 6 million Emergency Room (ER) visits annually. These systems are built by clinical psychologists, psychiatrists, and Artificial Intelligence (AI) researchers for Cognitive Behavioral Therapy (CBT). At present, the role of VMHAs is to provide emotional support through information, focusing less on developing a reflective conversation with the patient. A more comprehensive, safe and explainable approach is required to build responsible VMHAs to ask follow-up questions or provide a well-informed response. This survey offers a systematic critical review of the existing conversational agents in mental health, followed by new insights into the improvements of VMHAs with contextual knowledge, datasets, and their emerging role in clinical decision support. We also provide new directions toward enriching the user experience of VMHAs with explainability, safety, and wholesome trustworthiness. Finally, we provide evaluation metrics and practical considerations for VMHAs beyond the current literature to build trust between VMHAs and patients in active communications.