Goto

Collaborating Authors

 Gao, Xiang


Learning to Search Effective Example Sequences for In-Context Learning

arXiv.org Artificial Intelligence

Large language models (LLMs) demonstrate impressive few-shot learning capabilities, but their performance varies widely based on the sequence of in-context examples. Key factors influencing this include the sequence's length, composition, and arrangement, as well as its relation to the specific query. Existing methods often tackle these factors in isolation, overlooking their interdependencies. Moreover, the extensive search space for selecting optimal sequences complicates the development of a holistic approach. In this work, we introduce Beam Search-based Example Sequence Constructor (BESC), a novel method for learning to construct optimal example sequences. BESC addresses all key factors involved in sequence selection by considering them jointly during inference, while incrementally building the sequence. This design enables the use of beam search to significantly reduce the complexity of the search space. Experiments across various datasets and language models show notable improvements in performance.


Gradient-guided Attention Map Editing: Towards Efficient Contextual Hallucination Mitigation

arXiv.org Artificial Intelligence

In tasks like summarization and open-book question answering (QA), Large Language Models (LLMs) often encounter "contextual hallucination", where they produce irrelevant or incorrect responses despite having access to accurate source information. This typically occurs because these models tend to prioritize self-generated content over the input context, causing them to disregard pertinent details. To address this challenge, we introduce a novel method called "Guided Attention Map Editing" (GAME), which dynamically adjusts attention maps to improve contextual relevance. During inference, GAME employs a trained classifier to identify attention maps prone to inducing hallucinations and executes targeted interventions. These interventions, guided by gradient-informed "edit directions'', strategically redistribute attention weights across various heads to effectively reduce hallucination. Comprehensive evaluations on challenging summarization and open-book QA tasks show that GAME consistently reduces hallucinations across a variety of open-source models. Specifically, GAME reduces hallucinations by 10% in the XSum summarization task while achieving a 7X speed-up in computational efficiency compared to the state-of-the-art baselines.


CABS: Conflict-Aware and Balanced Sparsification for Enhancing Model Merging

arXiv.org Artificial Intelligence

Model merging based on task vectors, i.e., the parameter differences between fine-tuned models and a shared base model, provides an efficient way to integrate multiple task-specific models into a multitask model without retraining. Recent works have endeavored to address the conflicts between task vectors, one of the significant challenges faced by model merging, through sparsification; however, two issues significantly limit their performance: high parameter overlap and unbalanced weight distribution. To address these issues, we propose a simple, yet effective framework called CABS (Conflict-Aware and Balanced Sparsification), consisting of Conflict-Aware Sparsification (CA) and Balanced Sparsification (BS). CA can reduce parameter overlap by applying masks during sequential pruning, ensuring that each task vector retains distinct, non-overlapping parameters. BS leverages $n$: $m$ pruning to preserve critical weights while maintaining an even distribution across layers. Our comprehensive experiments demonstrate that CABS outperforms state-of-the-art methods across diverse tasks and model sizes.


Supervised Learning-enhanced Multi-Group Actor Critic for Live-stream Recommendation

arXiv.org Artificial Intelligence

Reinforcement Learning (RL) has been widely applied in recommendation systems to capture users' long-term engagement, thereby improving dwelling time and enhancing user retention. In the context of a short video & live-stream mixed recommendation scenario, the live-stream recommendation system (RS) decides whether to inject at most one live-stream into the video feed for each user request. To maximize long-term user engagement, it is crucial to determine an optimal live-stream injection policy for accurate live-stream allocation. However, traditional RL algorithms often face divergence and instability problems, and these issues are even more pronounced in our scenario. To address these challenges, we propose a novel Supervised Learning-enhanced Multi-Group Actor Critic algorithm (SL-MGAC). Specifically, we introduce a supervised learning-enhanced actor-critic framework that incorporates variance reduction techniques, where multi-task reward learning helps restrict bootstrapping error accumulation during critic learning. Additionally, we design a multi-group state decomposition module for both actor and critic networks to reduce prediction variance and improve model stability. Empirically, we evaluate the SL-MGAC algorithm using offline policy evaluation (OPE) and online A/B testing. Experimental results demonstrate that the proposed method not only outperforms baseline methods but also exhibits enhanced stability in online recommendation scenarios.


SPUQ: Perturbation-Based Uncertainty Quantification for Large Language Models

arXiv.org Artificial Intelligence

In recent years, large language models (LLMs) have become increasingly prevalent, offering remarkable text generation capabilities. However, a pressing challenge is their tendency to make confidently wrong predictions, highlighting the critical need for uncertainty quantification (UQ) in LLMs. While previous works have mainly focused on addressing aleatoric uncertainty, the full spectrum of uncertainties, including epistemic, remains inadequately explored. Motivated by this gap, we introduce a novel UQ method, sampling with perturbation for UQ (SPUQ), designed to tackle both aleatoric and epistemic uncertainties. The method entails generating a set of perturbations for LLM inputs, sampling outputs for each perturbation, and incorporating an aggregation module that generalizes the sampling uncertainty approach for text generation tasks. Through extensive experiments on various datasets, we investigated different perturbation and aggregation techniques. Our findings show a substantial improvement in model uncertainty calibration, with a reduction in Expected Calibration Error (ECE) by 50\% on average. Our findings suggest that our proposed UQ method offers promising steps toward enhancing the reliability and trustworthiness of LLMs.


RKHS-BA: A Semantic Correspondence-Free Multi-View Registration Framework with Global Tracking

arXiv.org Artificial Intelligence

Abstract--This work reports a novel Bundle Adjustment (BA) formulation using a Reproducing Kernel Hilbert Space (RKHS) representation called RKHS-BA. The proposed formulation is correspondence-free, enables the BA to use RGB-D/LiDAR and semantic labels in the optimization directly, and provides a generalization for the photometric loss function commonly used in direct methods. RKHS-BA can incorporate appearance and semantic labels within a continuous spatial-semantic functional representation that does not require optimization via image pyramids. We demonstrate its applications in sliding-window odometry and global LiDAR mapping, which show highly robust performance in extremely challenging scenes and the best tradeoff of generalization and accuracy. I. INTRODUCTION Bundle Adjustment (BA) is widely used in visual perception algorithms such as Simultaneous Localization and Mapping (SLAM) and 3D Reconstruction. It jointly optimizes visual structures and all the camera parameters to construct a spatially-consistent 3D world model [73]. Then, in the optimization step, they minimize reprojected geometric residuals for features observed across multiple frames via multi-view geometry [36, 73]. However, full images need to be stored in the to sparse Hessian structures but relies on correct feature pose graph even in semi-dense approaches [95]. Many works have their illumination invariance presumption is seriously violated been devoted to improving their robustness, such as improving in outdoor situations where complex illumination, changeable frontend feature matching's quality with deep networks [33], weather, and dynamic objects exist. Specifically, we denote various types of visual information, feature association contaminated with outliers is still an open including pixel classes, object instances, intensities, problem [56].


Investigating White-Box Attacks for On-Device Models

arXiv.org Artificial Intelligence

Numerous mobile apps have leveraged deep learning capabilities. However, on-device models are vulnerable to attacks as they can be easily extracted from their corresponding mobile apps. Existing on-device attacking approaches only generate black-box attacks, which are far less effective and efficient than white-box strategies. This is because mobile deep learning frameworks like TFLite do not support gradient computing, which is necessary for white-box attacking algorithms. Thus, we argue that existing findings may underestimate the harmfulness of on-device attacks. To this end, we conduct a study to answer this research question: Can on-device models be directly attacked via white-box strategies? We first systematically analyze the difficulties of transforming the on-device model to its debuggable version, and propose a Reverse Engineering framework for On-device Models (REOM), which automatically reverses the compiled on-device TFLite model to the debuggable model. Specifically, REOM first transforms compiled on-device models into Open Neural Network Exchange format, then removes the non-debuggable parts, and converts them to the debuggable DL models format that allows attackers to exploit in a white-box setting. Our experimental results show that our approach is effective in achieving automated transformation among 244 TFLite models. Compared with previous attacks using surrogate models, REOM enables attackers to achieve higher attack success rates with a hundred times smaller attack perturbations. In addition, because the ONNX platform has plenty of tools for model format exchanging, the proposed method based on the ONNX platform can be adapted to other model formats. Our findings emphasize the need for developers to carefully consider their model deployment strategies, and use white-box methods to evaluate the vulnerability of on-device models.


Customizing Language Model Responses with Contrastive In-Context Learning

arXiv.org Artificial Intelligence

Large language models (LLMs) are becoming increasingly important for machine learning applications. However, it can be challenging to align LLMs with our intent, particularly when we want to generate content that is preferable over others or when we want the LLM to respond in a certain style or tone that is hard to describe. To address this challenge, we propose an approach that uses contrastive examples to better describe our intent. This involves providing positive examples that illustrate the true intent, along with negative examples that show what characteristics we want LLMs to avoid. The negative examples can be retrieved from labeled data, written by a human, or generated by the LLM itself. Before generating an answer, we ask the model to analyze the examples to teach itself what to avoid. This reasoning step provides the model with the appropriate articulation of the user's need and guides it towards generting a better answer.


Machine Learning Driven Sensitivity Analysis of E3SM Land Model Parameters for Wetland Methane Emissions

arXiv.org Artificial Intelligence

Methane (CH4) is the second most critical greenhouse gas after carbon dioxide, contributing to 16-25% of the observed atmospheric warming. Wetlands are the primary natural source of methane emissions globally. However, wetland methane emission estimates from biogeochemistry models contain considerable uncertainty. One of the main sources of this uncertainty arises from the numerous uncertain model parameters within various physical, biological, and chemical processes that influence methane production, oxidation, and transport. Sensitivity Analysis (SA) can help identify critical parameters for methane emission and achieve reduced biases and uncertainties in future projections. This study performs SA for 19 selected parameters responsible for critical biogeochemical processes in the methane module of the Energy Exascale Earth System Model (E3SM) land model (ELM). The impact of these parameters on various CH4 fluxes is examined at 14 FLUXNET- CH4 sites with diverse vegetation types. Given the extensive number of model simulations needed for global variance-based SA, we employ a machine learning (ML) algorithm to emulate the complex behavior of ELM methane biogeochemistry. ML enables the computational time to be shortened significantly from 6 CPU hours to 0.72 milliseconds, achieving reduced computational costs. We found that parameters linked to CH4 production and diffusion generally present the highest sensitivities despite apparent seasonal variation. Comparing simulated emissions from perturbed parameter sets against FLUXNET-CH4 observations revealed that better performances can be achieved at each site compared to the default parameter values. This presents a scope for further improving simulated emissions using parameter calibration with advanced optimization techniques like Bayesian optimization.


Structured Neural Networks for Density Estimation and Causal Inference

arXiv.org Machine Learning

Injecting structure into neural networks enables learning functions that satisfy invariances with respect to subsets of inputs. For instance, when learning generative models using neural networks, it is advantageous to encode the conditional independence structure of observed variables, often in the form of Bayesian networks. We propose the Structured Neural Network (StrNN), which injects structure through masking pathways in a neural network. The masks are designed via a novel relationship we explore between neural network architectures and binary matrix factorization, to ensure that the desired independencies are respected. We devise and study practical algorithms for this otherwise NP-hard design problem based on novel objectives that control the model architecture. We demonstrate the utility of StrNN in three applications: (1) binary and Gaussian density estimation with StrNN, (2) real-valued density estimation with Structured Autoregressive Flows (StrAFs) and Structured Continuous Normalizing Flows (StrCNF), and (3) interventional and counterfactual analysis with StrAFs for causal inference. Our work opens up new avenues for learning neural networks that enable data-efficient generative modeling and the use of normalizing flows for causal effect estimation.