Gao, Pengzhi
Multilingual Machine Translation with Open Large Language Models at Practical Scale: An Empirical Study
Cui, Menglong, Gao, Pengzhi, Liu, Wei, Luan, Jian, Wang, Bin
Large language models (LLMs) have shown continuously improving multilingual capabilities, and even small-scale open-source models have demonstrated rapid performance enhancement. In this paper, we systematically explore the abilities of open LLMs with less than ten billion parameters to handle multilingual machine translation (MT) tasks. We conduct comprehensive evaluations on six popular LLMs and find that models like Gemma2-9B exhibit impressive multilingual translation capabilities. We then introduce the Parallel-First Monolingual-Second (PFMS) data mixing strategy in the continual pretraining stage to further enhance the MT performance and present GemmaX2-28, a 9B model achieving top-tier multilingual translation performance across 28 languages. Specifically, GemmaX2-28 consistently outperforms the state-of-the-art (SOTA) models such as TowerInstruct and XALMA and achieves competitive performance with Google Translate and GPT-4-turbo.
LLMs Assist NLP Researchers: Critique Paper (Meta-)Reviewing
Du, Jiangshu, Wang, Yibo, Zhao, Wenting, Deng, Zhongfen, Liu, Shuaiqi, Lou, Renze, Zou, Henry Peng, Venkit, Pranav Narayanan, Zhang, Nan, Srinath, Mukund, Zhang, Haoran Ranran, Gupta, Vipul, Li, Yinghui, Li, Tao, Wang, Fei, Liu, Qin, Liu, Tianlin, Gao, Pengzhi, Xia, Congying, Xing, Chen, Cheng, Jiayang, Wang, Zhaowei, Su, Ying, Shah, Raj Sanjay, Guo, Ruohao, Gu, Jing, Li, Haoran, Wei, Kangda, Wang, Zihao, Cheng, Lu, Ranathunga, Surangika, Fang, Meng, Fu, Jie, Liu, Fei, Huang, Ruihong, Blanco, Eduardo, Cao, Yixin, Zhang, Rui, Yu, Philip S., Yin, Wenpeng
This work is motivated by two key trends. On one hand, large language models (LLMs) have shown remarkable versatility in various generative tasks such as writing, drawing, and question answering, significantly reducing the time required for many routine tasks. On the other hand, researchers, whose work is not only time-consuming but also highly expertise-demanding, face increasing challenges as they have to spend more time reading, writing, and reviewing papers. This raises the question: how can LLMs potentially assist researchers in alleviating their heavy workload? This study focuses on the topic of LLMs assist NLP Researchers, particularly examining the effectiveness of LLM in assisting paper (meta-)reviewing and its recognizability. To address this, we constructed the ReviewCritique dataset, which includes two types of information: (i) NLP papers (initial submissions rather than camera-ready) with both human-written and LLM-generated reviews, and (ii) each review comes with "deficiency" labels and corresponding explanations for individual segments, annotated by experts. Using ReviewCritique, this study explores two threads of research questions: (i) "LLMs as Reviewers", how do reviews generated by LLMs compare with those written by humans in terms of quality and distinguishability? (ii) "LLMs as Metareviewers", how effectively can LLMs identify potential issues, such as Deficient or unprofessional review segments, within individual paper reviews? To our knowledge, this is the first work to provide such a comprehensive analysis.
Towards Boosting Many-to-Many Multilingual Machine Translation with Large Language Models
Gao, Pengzhi, He, Zhongjun, Wu, Hua, Wang, Haifeng
The training paradigm for machine translation has gradually shifted, from learning neural machine translation (NMT) models with extensive parallel corpora to instruction finetuning on multilingual large language models (LLMs) with high-quality translation pairs. In this paper, we focus on boosting many-to-many multilingual translation of LLMs with an emphasis on zero-shot translation directions. We demonstrate that prompt strategies adopted during finetuning are crucial to zero-shot translation and introduce a cross-lingual consistency regularization, XConST, to bridge the representation gap among different languages and improve zero-shot translation performance. XConST is not a new method, but a version of CrossConST (Gao et al., 2023a) adapted for translation instruction finetuning with LLMs. Experimental results on ALMA (Xu et al., 2023), Tower (Team, 2024), and LLaMA-2 (Touvron et al., 2023) show that our approach consistently improves translation performance. Our implementations are available at https://github.com/gpengzhi/CrossConST-LLM.
Learning Multilingual Sentence Representations with Cross-lingual Consistency Regularization
Gao, Pengzhi, Zhang, Liwen, He, Zhongjun, Wu, Hua, Wang, Haifeng
Multilingual sentence representations are the foundation for similarity-based bitext mining, which is crucial for scaling multilingual neural machine translation (NMT) system to more languages. In this paper, we introduce MuSR: a one-for-all Multilingual Sentence Representation model that supports more than 220 languages. Leveraging billions of English-centric parallel corpora, we train a multilingual Transformer encoder, coupled with an auxiliary Transformer decoder, by adopting a multilingual NMT framework with CrossConST, a cross-lingual consistency regularization technique proposed in Gao et al. (2023). Experimental results on multilingual similarity search and bitext mining tasks show the effectiveness of our approach. Specifically, MuSR achieves superior performance over LASER3 (Heffernan et al., 2022) which consists of 148 independent multilingual sentence encoders.
Improving Zero-shot Multilingual Neural Machine Translation by Leveraging Cross-lingual Consistency Regularization
Gao, Pengzhi, Zhang, Liwen, He, Zhongjun, Wu, Hua, Wang, Haifeng
The multilingual neural machine translation (NMT) model has a promising capability of zero-shot translation, where it could directly translate between language pairs unseen during training. For good transfer performance from supervised directions to zero-shot directions, the multilingual NMT model is expected to learn universal representations across different languages. This paper introduces a cross-lingual consistency regularization, CrossConST, to bridge the representation gap among different languages and boost zero-shot translation performance. The theoretical analysis shows that CrossConST implicitly maximizes the probability distribution for zero-shot translation, and the experimental results on both low-resource and high-resource benchmarks show that CrossConST consistently improves the translation performance. The experimental analysis also proves that CrossConST could close the sentence representation gap and better align the representation space. Given the universality and simplicity of CrossConST, we believe it can serve as a strong baseline for future multilingual NMT research.
A Data-Centric Framework for Composable NLP Workflows
Liu, Zhengzhong, Ding, Guanxiong, Bukkittu, Avinash, Gupta, Mansi, Gao, Pengzhi, Ahmed, Atif, Zhang, Shikun, Gao, Xin, Singhavi, Swapnil, Li, Linwei, Wei, Wei, Hu, Zecong, Shi, Haoran, Liang, Xiaodan, Mitamura, Teruko, Xing, Eric P., Hu, Zhiting
Empirical natural language processing (NLP) systems in application domains (e.g., healthcare, finance, education) involve interoperation among multiple components, ranging from data ingestion, human annotation, to text retrieval, analysis, generation, and visualization. We establish a unified open-source framework to support fast development of such sophisticated NLP workflows in a composable manner. The framework introduces a uniform data representation to encode heterogeneous results by a wide range of NLP tasks. It offers a large repository of processors for NLP tasks, visualization, and annotation, which can be easily assembled with full interoperability under the unified representation. The highly extensible framework allows plugging in custom processors from external off-the-shelf NLP and deep learning libraries. The whole framework is delivered through two modularized yet integratable open-source projects, namely Forte1 (for workflow infrastructure and NLP function processors) and Stave2 (for user interaction, visualization, and annotation).