Galatolo, Federico A.
Interpretable Machine Learning for Oral Lesion Diagnosis through Prototypical Instances Identification
Cascione, Alessio, Setzu, Mattia, Galatolo, Federico A., Cimino, Mario G. C. A., Guidotti, Riccardo
Decision-making processes in healthcare can be highly complex and challenging. Machine Learning tools offer significant potential to assist in these processes. However, many current methodologies rely on complex models that are not easily interpretable by experts. This underscores the need to develop interpretable models that can provide meaningful support in clinical decision-making. When approaching such tasks, humans typically compare the situation at hand to a few key examples and representative cases imprinted in their memory. Using an approach which selects such exemplary cases and grounds its predictions on them could contribute to obtaining high-performing interpretable solutions to such problems. To this end, we evaluate PivotTree, an interpretable prototype selection model, on an oral lesion detection problem, specifically trying to detect the presence of neoplastic, aphthous and traumatic ulcerated lesions from oral cavity images. We demonstrate the efficacy of using such method in terms of performance and offer a qualitative and quantitative comparison between exemplary cases and ground-truth prototypes selected by experts.
Improving Small-Scale Large Language Models Function Calling for Reasoning Tasks
Manduzio, Graziano A., Galatolo, Federico A., Cimino, Mario G. C. A., Scilingo, Enzo Pasquale, Cominelli, Lorenzo
Recent advancements in Large Language Models (LLMs) have demonstrated exceptional capabilities in natural language understanding and generation. While these models excel in general complex reasoning tasks, they still face challenges in mathematical problem-solving and logical reasoning. To address these limitations, researchers have explored function calling abilities, allowing LLMs to execute provided functions and utilize their outputs for task completion. However, concentrating on specific tasks can be very inefficient for large-scale LLMs to be used, because of the expensive cost of training and inference stages they need in terms of computational resources. This study introduces a novel framework for training smaller language models in function calling, focusing on specific logical and mathematical reasoning tasks. The approach aims to improve performances of small-scale models for these tasks using function calling, ensuring a high level of accuracy. Our framework employs an agent that, given a problem and a set of callable functions, queries the LLM by injecting a description and examples of the usable functions into the prompt and managing their calls in a step-by-step reasoning chain. This process is used to create a dataset of correct and incorrect reasoning chain chat completions from a large-scale LLM. This dataset is used to train a smaller LLM using Reinforcement Learning from Human Feedback (RLHF), specifically employing the Direct Preference Optimization (DPO) technique. Experimental results demonstrate how the proposed approach balances the trade-off between model size and performance, improving the ability of function calling for reasoning tasks, in smaller models.
Cerbero-7B: A Leap Forward in Language-Specific LLMs Through Enhanced Chat Corpus Generation and Evaluation
Galatolo, Federico A., Cimino, Mario G. C. A.
This study introduces a novel approach for generating high-quality, language-specific chat corpora using a self-chat mechanism. We combine a generator LLM for creating new samples and an embedder LLM to ensure diversity. A new Masked Language Modelling (MLM) model-based quality assessment metric is proposed for evaluating and filtering the corpora. Utilizing the llama2-70b as the generator and a multilingual sentence transformer as embedder, we generate an Italian chat corpus and refine the Fauno corpus, which is based on translated English ChatGPT self-chat data. The refinement uses structural assertions and Natural Language Processing techniques. Both corpora undergo a comprehensive quality evaluation using the proposed MLM model-based quality metric. The Italian LLM fine-tuned with these corpora demonstrates significantly enhanced language comprehension and question-answering skills. The resultant model, cerbero-7b, establishes a new state-of-the-art for Italian LLMs. This approach marks a substantial advancement in the development of language-specific LLMs, with a special emphasis on augmenting corpora for underrepresented languages like Italian.
TeTIm-Eval: a novel curated evaluation data set for comparing text-to-image models
Galatolo, Federico A., Cimino, Mario G. C. A., Cogotti, Edoardo
Evaluating and comparing text-to-image models is a challenging problem. Significant advances in the field have recently been made, piquing interest of various industrial sectors. As a consequence, a gold standard in the field should cover a variety of tasks and application contexts. In this paper a novel evaluation approach is experimented, on the basis of: (i) a curated data set, made by high-quality royalty-free image-text pairs, divided into ten categories; (ii) a quantitative metric, the CLIP-score, (iii) a human evaluation task to distinguish, for a given text, the real and the generated images. The proposed method has been applied to the most recent models, i.e., DALLE2, Latent Diffusion, Stable Diffusion, GLIDE and Craiyon. Early experimental results show that the accuracy of the human judgement is fully coherent with the CLIP-score. The dataset has been made available to the public.
Generating images from caption and vice versa via CLIP-Guided Generative Latent Space Search
Galatolo, Federico A., Cimino, Mario G. C. A., Vaglini, Gigliola
In this research work we present GLaSS, a novel zero-shot framework to generate an image(or a caption) corresponding to a given caption(or image). GLaSS is based on the CLIP neural network which given an image and a descriptive caption provides similar embeddings. Differently, GLaSS takes a caption (or an image) as an input, and generates the image (or the caption) whose CLIP embedding is most similar to the input one. This optimal image (or caption) is produced via a generative network after an exploration by a genetic algorithm. Promising results are shown, based on the experimentation of the image generators BigGAN and StyleGAN2, and of the text generator GPT2.
Formal derivation of Mesh Neural Networks with their Forward-Only gradient Propagation
Galatolo, Federico A., Cimino, Mario G. C. A., Vaglini, Gigliola
This paper proposes the Mesh Neural Network (MNN), a novel architecture which allows neurons to be connected in any topology, to efficiently route information. In MNNs, information is propagated between neurons throughout a state transition function. State and error gradients are then directly computed from state updates without backward computation. The MNN architecture and the error propagation schema is formalized and derived in tensor algebra. The proposed computational model can fully supply a gradient descent process, and is suitable for very large scale NNs, due to its expressivity and training efficiency, with respect to NNs based on back-propagation and computational graphs.
Using stigmergy as a computational memory in the design of recurrent neural networks
Galatolo, Federico A., Cimino, Mario G. C. A., Vaglini, Gigliola
In this paper, a novel architecture of Recurrent Neural Network (RNN) is designed and experimented. The proposed RNN adopts a computational memory based on the concept of stigmergy. The basic principle of a Stigmergic Memory (SM) is that the activity of deposit/removal of a quantity in the SM stimulates the next activities of deposit/removal. Accordingly, subsequent SM activities tend to reinforce/weaken each other, generating a coherent coordination between the SM activities and the input temporal stimulus. We show that, in a problem of supervised classification, the SM encodes the temporal input in an emergent representational model, by coordinating the deposit, removal and classification activities. This study lays down a basic framework for the derivation of a SM-RNN. A formal ontology of SM is discussed, and the SM-RNN architecture is detailed. To appreciate the computational power of an SM-RNN, comparative NNs have been selected and trained to solve the MNIST handwritten digits recognition benchmark in its two variants: spatial (sequences of bitmap rows) and temporal (sequences of pen strokes).
Using stigmergy to incorporate the time into artificial neural networks
Galatolo, Federico A., Cimino, Mario G. C. A., Vaglini, Gigliola
A current research trend in neurocomputing involves the design of novel artificial neural networks incorporating the concept of time into their operating model. In this paper, a novel architecture that employs stigmergy is proposed. Computational stigmergy is used to dynamically increase (or decrease) the strength of a connection, or the activation level, of an artificial neuron when stimulated (or released). This study lays down a basic framework for the derivation of a stigmergic NN with a related training algorithm. To show its potential, some pilot experiments have been reported. The XOR problem is solved by using only one single stigmergic neuron with one input and one output. A static NN, a stigmergic NN, a recurrent NN and a long short-term memory NN have been trained to solve the MNIST digits recognition benchmark.