Goto

Collaborating Authors

Gal, Yarin


Semi-supervised Learning of Galaxy Morphology using Equivariant Transformer Variational Autoencoders

arXiv.org Machine Learning

The growth in the number of galaxy images is much faster than the speed at which these galaxies can be labelled by humans. However, by leveraging the information present in the ever growing set of unlabelled images, semi-supervised learning could be an effective way of reducing the required labelling and increasing classification accuracy. We develop a Variational Autoencoder (VAE) with Equivariant Transformer layers with a classifier network from the latent space. We show that this novel architecture leads to improvements in accuracy when used for the galaxy morphology classification task on the Galaxy Zoo data set. In addition we show that pre-training the classifier network as part of the VAE using the unlabelled data leads to higher accuracy with fewer labels compared to exiting approaches. This novel VAE has the potential to automate galaxy morphology classification with reduced human labelling efforts.


Inter-domain Deep Gaussian Processes

arXiv.org Artificial Intelligence

Inter-domain Gaussian processes (GPs) allow for high flexibility and low computational cost when performing approximate inference in GP models. They are particularly suitable for modeling data exhibiting global structure but are limited to stationary covariance functions and thus fail to model non-stationary data effectively. We propose Inter-domain Deep Gaussian Processes, an extension of inter-domain shallow GPs that combines the advantages of inter-domain and deep Gaussian processes (DGPs), and demonstrate how to leverage existing approximate inference methods to perform simple and scalable approximate inference using inter-domain features in DGPs. We assess the performance of our method on a range of regression tasks and demonstrate that it outperforms inter-domain shallow GPs and conventional DGPs on challenging large-scale real-world datasets exhibiting both global structure as well as a high-degree of non-stationarity.


On Signal-to-Noise Ratio Issues in Variational Inference for Deep Gaussian Processes

arXiv.org Artificial Intelligence

We show that the gradient estimates used in training Deep Gaussian Processes (DGPs) with importance-weighted variational inference are susceptible to signal-to-noise ratio (SNR) issues. Specifically, we show both theoretically and empirically that the SNR of the gradient estimates for the latent variable's variational parameters decreases as the number of importance samples increases. As a result, these gradient estimates degrade to pure noise if the number of importance samples is too large. To address this pathology, we show how doubly-reparameterized gradient estimators, originally proposed for training variational autoencoders, can be adapted to the DGP setting and that the resultant estimators completely remedy the SNR issue, thereby providing more reliable training. Finally, we demonstrate that our fix can lead to improvements in the predictive performance of the model's predictive posterior.


How Robust are the Estimated Effects of Nonpharmaceutical Interventions against COVID-19?

arXiv.org Machine Learning

To what extent are effectiveness estimates of nonpharmaceutical interventions (NPIs) against COVID-19 influenced by the assumptions our models make? To answer this question, we investigate 2 state-of-the-art NPI effectiveness models and propose 6 variants that make different structural assumptions. In particular, we investigate how well NPI effectiveness estimates generalise to unseen countries, and their sensitivity to unobserved factors. Models that account for noise in disease transmission compare favourably. We further evaluate how robust estimates are to different choices of epidemiological parameters and data. Focusing on models that assume transmission noise, we find that previously published results are robust across these choices and across different models. Finally, we mathematically ground the interpretation of NPI effectiveness estimates when certain common assumptions do not hold.


Identifying Causal-Effect Inference Failure with Uncertainty-Aware Models

arXiv.org Machine Learning

Recommending the best course of action for an individual is a major application of individual-level causal effect estimation. This application is often needed in safety-critical domains such as healthcare, where estimating and communicating uncertainty to decision-makers is crucial. We introduce a practical approach for integrating uncertainty estimation into a class of state-of-the-art neural network methods used for individual-level causal estimates. We show that our methods enable us to deal gracefully with situations of "no-overlap", common in highdimensional data, where standard applications of causal effect approaches fail. Further, our methods allow us to handle covariate shift, where the train and test distributions differ, common when systems are deployed in practice. We show that when such a covariate shift occurs, correctly modeling uncertainty can keep us from giving overconfident and potentially harmful recommendations. We demonstrate our methodology with a range of state-of-the-art models. Under both covariate shift and lack of overlap, our uncertainty-equipped methods can alert decision makers when predictions are not to be trusted while outperforming standard methods that use the propensity score to identify lack of overlap.


Interlocking Backpropagation: Improving depthwise model-parallelism

arXiv.org Artificial Intelligence

The number of parameters in state of the art neural networks has drastically increased in recent years. This surge of interest in large scale neural networks has motivated the development of new distributed training strategies enabling such models. One such strategy is model-parallel distributed training. Unfortunately, model-parallelism suffers from poor resource utilisation, which leads to wasted resources. In this work, we improve upon recent developments in an idealised model-parallel optimisation setting: local learning. Motivated by poor resource utilisation, we introduce a class of intermediary strategies between local and global learning referred to as interlocking backpropagation. These strategies preserve many of the compute-efficiency advantages of local optimisation, while recovering much of the task performance achieved by global optimisation. We assess our strategies on both image classification ResNets and Transformer language models, finding that our strategy consistently out-performs local learning in terms of task performance, and out-performs global learning in training efficiency.


Can Autonomous Vehicles Identify, Recover From, and Adapt to Distribution Shifts?

arXiv.org Machine Learning

Out-of-training-distribution (OOD) scenarios are a common challenge of learning agents at deployment, typically leading to arbitrary deductions and poorly-informed decisions. In principle, detection of and adaptation to OOD scenes can mitigate their adverse effects. In this paper, we highlight the limitations of current approaches to novel driving scenes and propose an epistemic uncertainty-aware planning method, called \emph{robust imitative planning} (RIP). Our method can detect and recover from some distribution shifts, reducing the overconfident and catastrophic extrapolations in OOD scenes. If the model's uncertainty is too great to suggest a safe course of action, the model can instead query the expert driver for feedback, enabling sample-efficient online adaptation, a variant of our method we term \emph{adaptive robust imitative planning} (AdaRIP). Our methods outperform current state-of-the-art approaches in the nuScenes \emph{prediction} challenge, but since no benchmark evaluating OOD detection and adaption currently exists to assess \emph{control}, we introduce an autonomous car novel-scene benchmark, \texttt{CARNOVEL}, to evaluate the robustness of driving agents to a suite of tasks with distribution shifts.


SliceOut: Training Transformers and CNNs faster while using less memory

arXiv.org Machine Learning

We demonstrate 10-40% speedups and memory reduction with Wide ResNets, EfficientNets, and Transformer models, with minimal to no loss in accuracy, using SliceOut---a new dropout scheme designed to take advantage of GPU memory layout. By dropping contiguous sets of units at random, our method preserves the regularization properties of dropout while allowing for more efficient low-level implementation, resulting in training speedups through (1) fast memory access and matrix multiplication of smaller tensors, and (2) memory savings by avoiding allocating memory to zero units in weight gradients and activations. Despite its simplicity, our method is highly effective. We demonstrate its efficacy at scale with Wide ResNets & EfficientNets on CIFAR10/100 and ImageNet, as well as Transformers on the LM1B dataset. These speedups and memory savings in training can lead to $CO_2$ emissions reduction of up to 40% for training large models.


Single Shot Structured Pruning Before Training

arXiv.org Machine Learning

We introduce a method to speed up training by 2x and inference by 3x in deep neural networks using structured pruning applied before training. Unlike previous works on pruning before training which prune individual weights, our work develops a methodology to remove entire channels and hidden units with the explicit aim of speeding up training and inference. We introduce a compute-aware scoring mechanism which enables pruning in units of sensitivity per FLOP removed, allowing even greater speed ups. Our method is fast, easy to implement, and needs just one forward/backward pass on a single batch of data to complete pruning before training begins.


Learning Invariant Representations for Reinforcement Learning without Reconstruction

arXiv.org Artificial Intelligence

We study how representation learning can accelerate reinforcement learning from rich observations, such as images, without relying either on domain knowledge or pixel-reconstruction. Our goal is to learn representations that both provide for effective downstream control and invariance to task-irrelevant details. Bisimulation metrics quantify behavioral similarity between states in continuous MDPs, which we propose using to learn robust latent representations which encode only the task-relevant information from observations. Our method trains encoders such that distances in latent space equal bisimulation distances in state space. We demonstrate the effectiveness of our method at disregarding task-irrelevant information using modified visual MuJoCo tasks, where the background is replaced with moving distractors and natural videos, while achieving SOTA performance. We also test a first-person highway driving task where our method learns invariance to clouds, weather, and time of day. Finally, we provide generalization results drawn from properties of bisimulation metrics, and links to causal inference.