Goto

Collaborating Authors

 Gaidon, Adrien


ReFiNe: Recursive Field Networks for Cross-modal Multi-scene Representation

arXiv.org Artificial Intelligence

The common trade-offs of state-of-the-art methods for multi-shape representation (a single model "packing" multiple objects) involve trading modeling accuracy against memory and storage. We show how to encode multiple shapes represented as continuous neural fields with a higher degree of precision than previously possible and with low memory usage. Key to our approach is a recursive hierarchical formulation that exploits object self-similarity, leading to a highly compressed and efficient shape latent space. Thanks to the recursive formulation, our method supports spatial and global-to-local latent feature fusion without needing to initialize and maintain auxiliary data structures, while still allowing for continuous field queries to enable applications such as raytracing. In experiments on a set of diverse datasets, we provide compelling qualitative results and demonstrate state-of-the-art multi-scene reconstruction and compression results with a single network per dataset.


Linearizing Large Language Models

arXiv.org Artificial Intelligence

Linear transformers have emerged as a subquadratic-time alternative to softmax attention and have garnered significant interest due to their fixed-size recurrent state that lowers inference cost. However, their original formulation suffers from poor scaling and underperforms compute-matched transformers. Recent linear models such as RWKV and Mamba have attempted to address these shortcomings by proposing novel time-mixing and gating architectures, but pre-training large language models requires significant data and compute investments. Thus, the search for subquadratic architectures is limited by the availability of compute and quality pre-training datasets. As a cost-effective alternative to pre-training linear transformers, we propose Scalable UPtraining for Recurrent Attention (SUPRA). We present a method to uptrain existing large pre-trained transformers into Recurrent Neural Networks (RNNs) with a modest compute budget. This allows us to leverage the strong pre-training data and performance of existing transformer LLMs, while requiring 5% of the training cost. We find that our linearization technique leads to competitive performance on standard benchmarks, but we identify persistent in-context learning and long-context modeling shortfalls for even the largest linear models. Our code and models can be found at https://github.com/TRI-ML/linear_open_lm.


NeRF-MAE: Masked AutoEncoders for Self-Supervised 3D Representation Learning for Neural Radiance Fields

arXiv.org Artificial Intelligence

Neural fields excel in computer vision and robotics due to their ability to understand the 3D visual world such as inferring semantics, geometry, and dynamics. Given the capabilities of neural fields in densely representing a 3D scene from 2D images, we ask the question: Can we scale their self-supervised pretraining, specifically using masked autoencoders, to generate effective 3D representations from posed RGB images. Owing to the astounding success of extending transformers to novel data modalities, we employ standard 3D Vision Transformers to suit the unique formulation of NeRFs. We leverage NeRF's volumetric grid as a dense input to the transformer, contrasting it with other 3D representations such as pointclouds where the information density can be uneven, and the representation is irregular. Due to the difficulty of applying masked autoencoders to an implicit representation, such as NeRF, we opt for extracting an explicit representation that canonicalizes scenes across domains by employing the camera trajectory for sampling. Our goal is made possible by masking random patches from NeRF's radiance and density grid and employing a standard 3D Swin Transformer to reconstruct the masked patches. In doing so, the model can learn the semantic and spatial structure of complete scenes. We pretrain this representation at scale on our proposed curated posed-RGB data, totaling over 1.6 million images. Once pretrained, the encoder is used for effective 3D transfer learning. Our novel self-supervised pretraining for NeRFs, NeRF-MAE, scales remarkably well and improves performance on various challenging 3D tasks. Utilizing unlabeled posed 2D data for pretraining, NeRF-MAE significantly outperforms self-supervised 3D pretraining and NeRF scene understanding baselines on Front3D and ScanNet datasets with an absolute performance improvement of over 20% AP50 and 8% AP25 for 3D object detection.


Understanding Video Transformers via Universal Concept Discovery

arXiv.org Artificial Intelligence

This paper studies the problem of concept-based interpretability of transformer representations for videos. Concretely, we seek to explain the decision-making process of video transformers based on high-level, spatiotemporal concepts that are automatically discovered. Prior research on concept-based interpretability has concentrated solely on image-level tasks. Comparatively, video models deal with the added temporal dimension, increasing complexity and posing challenges in identifying dynamic concepts over time. In this work, we systematically address these challenges by introducing the first Video Transformer Concept Discovery (VTCD) algorithm. To this end, we propose an efficient approach for unsupervised identification of units of video transformer representations - concepts, and ranking their importance to the output of a model. The resulting concepts are highly interpretable, revealing spatio-temporal reasoning mechanisms and object-centric representations in unstructured video models. Performing this analysis jointly over a diverse set of supervised and self-supervised representations, we discover that some of these mechanism are universal in video transformers. Finally, we demonstrate that VTCDcan be used to improve model performance for fine-grained tasks.


Can Active Sampling Reduce Causal Confusion in Offline Reinforcement Learning?

arXiv.org Artificial Intelligence

Causal confusion is a phenomenon where an agent learns a policy that reflects imperfect spurious correlations in the data. Such a policy may falsely appear to be optimal during training if most of the training data contain such spurious correlations. This phenomenon is particularly pronounced in domains such as robotics, with potentially large gaps between the open- and closed-loop performance of an agent. In such settings, causally confused models may appear to perform well according to open-loop metrics during training but fail catastrophically when deployed in the real world. In this paper, we study causal confusion in offline reinforcement learning. We investigate whether selectively sampling appropriate points from a dataset of demonstrations may enable offline reinforcement learning agents to disambiguate the underlying causal mechanisms of the environment, alleviate causal confusion in offline reinforcement learning, and produce a safer model for deployment. To answer this question, we consider a set of tailored offline reinforcement learning datasets that exhibit causal ambiguity and assess the ability of active sampling techniques to reduce causal confusion at evaluation. We provide empirical evidence that uniform and active sampling techniques are able to consistently reduce causal confusion as training progresses and that active sampling is able to do so significantly more efficiently than uniform sampling.


NeO 360: Neural Fields for Sparse View Synthesis of Outdoor Scenes

arXiv.org Artificial Intelligence

Recent implicit neural representations have shown great results for novel view synthesis. However, existing methods require expensive per-scene optimization from many views hence limiting their application to real-world unbounded urban settings where the objects of interest or backgrounds are observed from very few views. To mitigate this challenge, we introduce a new approach called NeO 360, Neural fields for sparse view synthesis of outdoor scenes. NeO 360 is a generalizable method that reconstructs 360{\deg} scenes from a single or a few posed RGB images. The essence of our approach is in capturing the distribution of complex real-world outdoor 3D scenes and using a hybrid image-conditional triplanar representation that can be queried from any world point. Our representation combines the best of both voxel-based and bird's-eye-view (BEV) representations and is more effective and expressive than each. NeO 360's representation allows us to learn from a large collection of unbounded 3D scenes while offering generalizability to new views and novel scenes from as few as a single image during inference. We demonstrate our approach on the proposed challenging 360{\deg} unbounded dataset, called NeRDS 360, and show that NeO 360 outperforms state-of-the-art generalizable methods for novel view synthesis while also offering editing and composition capabilities. Project page: https://zubair-irshad.github.io/projects/neo360.html


Towards Zero-Shot Scale-Aware Monocular Depth Estimation

arXiv.org Artificial Intelligence

Monocular depth estimation is scale-ambiguous, and thus requires scale supervision to produce metric predictions. Even so, the resulting models will be geometry-specific, with learned scales that cannot be directly transferred across domains. Because of that, recent works focus instead on relative depth, eschewing scale in favor of improved up-to-scale zero-shot transfer. In this work we introduce ZeroDepth, a novel monocular depth estimation framework capable of predicting metric scale for arbitrary test images from different domains and camera parameters. This is achieved by (i) the use of input-level geometric embeddings that enable the network to learn a scale prior over objects; and (ii) decoupling the encoder and decoder stages, via a variational latent representation that is conditioned on single frame information. We evaluated ZeroDepth targeting both outdoor (KITTI, DDAD, nuScenes) and indoor (NYUv2) benchmarks, and achieved a new state-of-the-art in both settings using the same pre-trained model, outperforming methods that train on in-domain data and require test-time scaling to produce metric estimates.


Multi-Object Manipulation via Object-Centric Neural Scattering Functions

arXiv.org Artificial Intelligence

Learned visual dynamics models have proven effective for robotic manipulation tasks. Yet, it remains unclear how best to represent scenes involving multi-object interactions. Current methods decompose a scene into discrete objects, but they struggle with precise modeling and manipulation amid challenging lighting conditions as they only encode appearance tied with specific illuminations. In this work, we propose using object-centric neural scattering functions (OSFs) as object representations in a model-predictive control framework. OSFs model per-object light transport, enabling compositional scene re-rendering under object rearrangement and varying lighting conditions. By combining this approach with inverse parameter estimation and graph-based neural dynamics models, we demonstrate improved model-predictive control performance and generalization in compositional multi-object environments, even in previously unseen scenarios and harsh lighting conditions.


HomE: Homography-Equivariant Video Representation Learning

arXiv.org Artificial Intelligence

Recent advances in self-supervised representation learning have enabled more efficient and robust model performance without relying on extensive labeled data. However, most works are still focused on images, with few working on videos and even fewer on multi-view videos, where more powerful inductive biases can be leveraged for self-supervision. In this work, we propose a novel method for representation learning of multi-view videos, where we explicitly model the representation space to maintain Homography Equivariance (HomE). Our method learns an implicit mapping between different views, culminating in a representation space that maintains the homography relationship between neighboring views. We evaluate our HomE representation via action recognition and pedestrian intent prediction as downstream tasks. On action classification, our method obtains 96.4% 3-fold accuracy on the UCF101 dataset, better than most state-of-the-art self-supervised learning methods. Similarly, on the STIP dataset, we outperform the state-of-the-art by 6% for pedestrian intent prediction one second into the future while also obtaining an accuracy of 91.2% for pedestrian action (cross vs. not-cross) classification. Code is available at https://github.com/anirudhs123/HomE.


Neural Groundplans: Persistent Neural Scene Representations from a Single Image

arXiv.org Artificial Intelligence

We present a method to map 2D image observations of a scene to a persistent 3D scene representation, enabling novel view synthesis and disentangled representation of the movable and immovable components of the scene. Motivated by the bird's-eye-view (BEV) representation commonly used in vision and robotics, we propose conditional neural groundplans, ground-aligned 2D feature grids, as persistent and memory-efficient scene representations. Our method is trained selfsupervised from unlabeled multi-view observations using differentiable rendering, and learns to complete geometry and appearance of occluded regions. In addition, we show that we can leverage multi-view videos at training time to learn to separately reconstruct static and movable components of the scene from a single image at test time. The ability to separately reconstruct movable objects enables a variety of downstream tasks using simple heuristics, such as extraction of objectcentric 3D representations, novel view synthesis, instance-level segmentation, 3D bounding box prediction, and scene editing. This highlights the value of neural groundplans as a backbone for efficient 3D scene understanding models. We study the problem of inferring a persistent 3D scene representation given a few image observations, while disentangling static scene components from movable objects (referred to as dynamic). Recent works in differentiable rendering have made significant progress in the long-standing problem of 3D reconstruction from small sets of image observations (Yu et al., 2020; Sitzmann et al., 2019b; Sajjadi et al., 2021). Approaches based on pixel-aligned features (Yu et al., 2020; Trevithick & Yang, 2021; Henzler et al., 2021) have achieved plausible novel view synthesis of scenes composed of independent objects from single images. However, these methods do not produce persistent 3D scene representations that can be directly processed in 3D, for instance, via 3D convolutions. Instead, all processing has to be performed in image space. In contrast, some methods infer 3D voxel grids, enabling processing such as geometry and appearance completion via shift-equivariant 3D convolutions (Lal et al., 2021; Guo et al., 2022), which is however expensive both in terms of computation and memory. Meanwhile, bird's-eye-view (BEV) representations, 2D grids aligned with the ground plane of a scene, have been fruitfully deployed as state representations for navigation, layout generation, and future frame prediction (Saha et al., 2022; Philion & Fidler, 2020; Roddick et al., 2019; Jeong et al., 2022; Mani et al., 2020). While they compress the height axis and are thus not a full 3D representation, 2D convolutions on top of BEVs retain shift-equivariance in the ground plane and are, in contrast to image-space convolutions, free of perspective camera distortions.