Goto

Collaborating Authors

 Furlong, Michael


NeuroBench: Advancing Neuromorphic Computing through Collaborative, Fair and Representative Benchmarking

arXiv.org Artificial Intelligence

The field of neuromorphic computing holds great promise in terms of advancing computing efficiency and capabilities by following brain-inspired principles. However, the rich diversity of techniques employed in neuromorphic research has resulted in a lack of clear standards for benchmarking, hindering effective evaluation of the advantages and strengths of neuromorphic methods compared to traditional deep-learning-based methods. This paper presents a collaborative effort, bringing together members from academia and the industry, to define benchmarks for neuromorphic computing: NeuroBench. The goals of NeuroBench are to be a collaborative, fair, and representative benchmark suite developed by the community, for the community. In this paper, we discuss the challenges associated with benchmarking neuromorphic solutions, and outline the key features of NeuroBench. We believe that NeuroBench will be a significant step towards defining standards that can unify the goals of neuromorphic computing and drive its technological progress. Please visit neurobench.ai for the latest updates on the benchmark tasks and metrics.


Spatio-Spectral Exploration Combining In Situ and Remote Measurements

AAAI Conferences

Adaptive exploration uses active learning principles to improve the efficiency of autonomous robotic surveys. This work considers an important and understudied aspect of autonomous exploration: in situ validation of remote sensing measurements. We focus on high- dimensional sensor data with a specific case study of spectroscopic mapping. A field robot refines an orbital image by measuring the surface at many wavelengths. We introduce a new objective function based on spectral unmixing that seeks pure spectral signatures to accurately model diluted remote signals. This objective reflects physical properties of the multi-wavelength data. The rover visits locations that jointly improve its model of the environment while satisfying time and energy constraints. We simulate exploration using alternative planning approaches, and show proof of concept results with the canonical spectroscopic map of a mining district in Cuprite, Nevada.


Science Autonomy for Rover Subsurface Exploration of the Atacama Desert

AI Magazine

This, coupled with limited bandwidth and latencies, motivates onboard autonomy that ensures the quality of the science data return. Increasing quality of the data involves better sample selection, data validation, and data reduction. Robotic studies in Mars-like desert terrain have advanced autonomy for long distance exploration and seeded technologies for planetary rover missions. Specific capabilities include instrument calibration, visual targeting of selected features, an onboard database of collected data, and a long range path planner that guides the robot using analysis of current surface and prior satellite data.


Science Autonomy for Rover Subsurface Exploration of the Atacama Desert

AI Magazine

As planetary rovers expand their capabilities, traveling longer distances, deploying complex tools, and collecting voluminous scientific data, the requirements for intelligent guidance and control also grow. This, coupled with limited bandwidth and latencies, motivates onboard autonomy that ensures the quality of the science data return. Increasing quality of the data involves better sample selection, data validation, and data reduction. Robotic studies in Mars-like desert terrain have advanced autonomy for long distance exploration and seeded technologies for planetary rover missions. In these field experiments the remote science team uses a novel control strategy that intersperses preplanned activities with autonomous decision making. The robot performs automatic data collection, interpretation, and response at multiple spatial scales. Specific capabilities include instrument calibration, visual targeting of selected features, an onboard database of collected data, and a long range path planner that guides the robot using analysis of current surface and prior satellite data. Field experiments in the Atacama Desert of Chile over the past decade demonstrate these capabilities and illustrate current challenges and future directions.