Goto

Collaborating Authors

 Fung, Glenn


Weighting vectors for machine learning: numerical harmonic analysis applied to boundary detection

arXiv.org Machine Learning

Metric space magnitude, an active field of research in algebraic topology, is a scalar quantity that summarizes the effective number of distinct points that live in a general metric space. The {\em weighting vector} is a closely-related concept that captures, in a nontrivial way, much of the underlying geometry of the original metric space. Recent work has demonstrated that when the metric space is Euclidean, the weighting vector serves as an effective tool for boundary detection. We recast this result and show the weighting vector may be viewed as a solution to a kernelized SVM. As one consequence, we apply this new insight to the task of outlier detection, and we demonstrate performance that is competitive or exceeds performance of state-of-the-art techniques on benchmark data sets. Under mild assumptions, we show the weighting vector, which has computational cost of matrix inversion, can be efficiently approximated in linear time. We show how nearest neighbor methods can approximate solutions to the minimization problems defined by SVMs.


SGD Distributional Dynamics of Three Layer Neural Networks

arXiv.org Machine Learning

With the rise of big data analytics, multi-layer neural networks have surfaced as one of the most powerful machine learning methods. However, their theoretical mathematical properties are still not fully understood. Training a neural network requires optimizing a non-convex objective function, typically done using stochastic gradient descent (SGD). In this paper, we seek to extend the mean field results of Mei et al. (2018) from two-layer neural networks with one hidden layer to three-layer neural networks with two hidden layers. We will show that the SGD dynamics is captured by a set of non-linear partial differential equations, and prove that the distributions of weights in the two hidden layers are independent. We will also detail exploratory work done based on simulation and real-world data.


Practical applications of metric space magnitude and weighting vectors

arXiv.org Machine Learning

Metric space magnitude, an active subject of research in algebraic topology, originally arose in the context of biology, where it was used to represent the effective number of distinct species in an environment. In a more general setting, the magnitude of a metric space is a real number that aims to quantify the effective number of distinct points in the space. The contribution of each point to a metric space's global magnitude, which is encoded by the {\em weighting vector}, captures much of the underlying geometry of the original metric space. Surprisingly, when the metric space is Euclidean, the weighting vector also serves as an effective tool for boundary detection. This allows the weighting vector to serve as the foundation of novel algorithms for classic machine learning tasks such as classification, outlier detection and active learning. We demonstrate, using experiments and comparisons on classic benchmark datasets, the promise of the proposed magnitude and weighting vector-based approaches.


Modeling Multiple Annotator Expertise in the Semi-Supervised Learning Scenario

arXiv.org Machine Learning

Learning algorithms normally assume that there is at most one annotation or label per data point. However, in some scenarios, such as medical diagnosis and on-line collaboration,multiple annotations may be available. In either case, obtaining labels for data points can be expensive and time-consuming (in some circumstances ground-truth may not exist). Semi-supervised learning approaches have shown that utilizing the unlabeled data is often beneficial in these cases. This paper presents a probabilistic semi-supervised model and algorithm that allows for learning from both unlabeled and labeled data in the presence of multiple annotators. We assume that it is known what annotator labeled which data points. The proposed approach produces annotator models that allow us to provide (1) estimates of the true label and (2) annotator variable expertise for both labeled and unlabeled data. We provide numerical comparisons under various scenarios and with respect to standard semi-supervised learning. Experiments showed that the presented approach provides clear advantages over multi-annotator methods that do not use the unlabeled data and over methods that do not use multi-labeler information.