Fu, Yun
Boosting Large Language Models with Mask Fine-Tuning
Zhang, Mingyuan, Bai, Yue, Wang, Huan, Wang, Yizhou, Dong, Qihua, Fu, Yun
The model is usually kept integral in the mainstream large language model (LLM) fine-tuning protocols. No works have questioned whether maintaining the integrity of the model is indispensable for performance. In this work, we introduce Mask Fine-Tuning (MFT), a brand-new LLM fine-tuning paradigm to show that properly breaking the integrity of the model can surprisingly lead to improved performance. Specifically, MFT learns a set of binary masks supervised by the typical LLM fine-tuning objective. Extensive experiments show that MFT gains a consistent performance boost across various domains and backbones (e.g., 1.95%/1.88% average gain in coding with LLaMA2-7B/3.1-8B). Detailed procedures are provided to study the proposed MFT from different hyperparameter perspectives for better insight. In particular, MFT naturally updates the current LLM training protocol by deploying it on a complete well-trained model. This study extends the functionality of mask learning from its conventional network pruning context for model compression to a more general scope.
Token Dynamics: Towards Efficient and Dynamic Video Token Representation for Video Large Language Models
Zhang, Haichao, Li, Zhuowei, Metaxas, Dimitris, Fu, Yun
Token-based video representation has emerged as a promising approach for enabling large language models to interpret video content. However, existing token reduction techniques, such as token pruning and token merging, often disrupt essential spatial-temporal positional embeddings, failing to adequately balance computational efficiency with fewer tokens. Consequently, these methods result in relatively lengthy token sequences, limiting their applicability in scenarios requiring extreme token compression, such as video large language models. In this paper, we introduce the novel task of extreme short token reduction, aiming to represent extensive video sequences with a minimal number of tokens. To address this challenge, we propose Token Dynamics, a new video representation framework that dynamically reduces token count while preserving spatial-temporal coherence. Specifically, we disentangle video representations by separating visual embeddings from grid-level motion information, structuring them into: 1. a concise token base, created by clustering tokens that describe object-level content; 2. a token dynamics map, capturing detailed spatial-temporal motion patterns across grids. Furthermore, we introduce a cross-dynamics attention mechanism that integrates motion features into the token base without increasing token length, thereby maintaining compactness and spatial-temporal integrity. The experiments demonstrate a reduction of token count to merely 0.07% of the original tokens, with only a minor performance drop of 1.13%. Additionally, we propose two novel subtasks within extreme token reduction (fixed-length and adaptive-length compression), both effectively representing long token sequences for video-language tasks. Our method offers significantly lower theoretical complexity, fewer tokens, and enhanced throughput, thus providing an efficient solution for video LLMs.
REGEN: Learning Compact Video Embedding with (Re-)Generative Decoder
Zhang, Yitian, Mai, Long, Mahapatra, Aniruddha, Bourgin, David, Hong, Yicong, Casebeer, Jonah, Liu, Feng, Fu, Yun
We present a novel perspective on learning video embedders for generative modeling: rather than requiring an exact reproduction of an input video, an effective embedder should focus on synthesizing visually plausible reconstructions. This relaxed criterion enables substantial improvements in compression ratios without compromising the quality of downstream generative models. Specifically, we propose replacing the conventional encoder-decoder video embedder with an encoder-generator framework that employs a diffusion transformer (DiT) to synthesize missing details from a compact latent space. Therein, we develop a dedicated latent conditioning module to condition the DiT decoder on the encoded video latent embedding. Our experiments demonstrate that our approach enables superior encoding-decoding performance compared to state-of-the-art methods, particularly as the compression ratio increases. To demonstrate the efficacy of our approach, we report results from our video embedders achieving a temporal compression ratio of up to 32x (8x higher than leading video embedders) and validate the robustness of this ultra-compact latent space for text-to-video generation, providing a significant efficiency boost in latent diffusion model training and inference.
Scale-Free Graph-Language Models
Lu, Jianglin, Liu, Yixuan, Zhang, Yitian, Fu, Yun
Graph-language models (GLMs) have demonstrated great potential in graph-based semi-supervised learning. A typical GLM consists of two key stages: graph generation and text embedding, which are usually implemented by inferring a latent graph and finetuning a language model (LM), respectively. However, the former often relies on artificial assumptions about the underlying edge distribution, while the latter requires extensive data annotations. To tackle these challenges, this paper introduces a novel GLM that integrates graph generation and text embedding within a unified framework. We unexpectedly find that this natural property can be effectively approximated by a simple k -nearest neighbor (KNN) graph. For text embedding, we develop a graph-based pseudo-labeler that utilizes scale-free graphs to provide complementary supervision for improved LM finetuning. Extensive experiments on representative datasets validate our findings on the scale-free structural approximation of KNN graphs and demonstrate the effectiveness of integrating graph generation and text embedding with a real structural prior. Recently, graph-language models (GLMs) have been widely explored in graph-based semi-supervised classification on documents, especially for citation networks (Qin et al., 2023; Y u et al., 2025; Lu et al., 2023; He et al., 2024). When designing a GLM for classification, two key challenges arise: graph generation --how to generate a reasonable graph structure for the given documents, and text embedding --how to encode the textual sequences into meaningful semantic features. To address these problems, various GLMs have been proposed, which can be broadly categorized into latent graph inference (LGI) models and language-assisted graph (LAG) models. LGI models focus on graph generation and typically rely on feature engineering approaches, such as bag-of-words (Harris, 1954), TF-IDF (Aizawa, 2003), and skip-gram (Mikolov et al., 2013), to encode textual sequences into shallow representations.
Text-to-3D Gaussian Splatting with Physics-Grounded Motion Generation
Wang, Wenqing, Fu, Yun
Text-to-3D generation is a valuable technology in virtual reality and digital content creation. While recent works have pushed the boundaries of text-to-3D generation, producing high-fidelity 3D objects with inefficient prompts and simulating their physics-grounded motion accurately still remain unsolved challenges. To address these challenges, we present an innovative framework that utilizes the Large Language Model (LLM)-refined prompts and diffusion priors-guided Gaussian Splatting (GS) for generating 3D models with accurate appearances and geometric structures. We also incorporate a continuum mechanics-based deformation map and color regularization to synthesize vivid physics-grounded motion for the generated 3D Gaussians, adhering to the conservation of mass and momentum. By integrating text-to-3D generation with physics-grounded motion synthesis, our framework renders photo-realistic 3D objects that exhibit physics-aware motion, accurately reflecting the behaviors of the objects under various forces and constraints across different materials. Extensive experiments demonstrate that our approach achieves high-quality 3D generations with realistic physics-grounded motion.
Slicing Vision Transformer for Flexible Inference
Zhang, Yitian, Coskun, Huseyin, Ma, Xu, Wang, Huan, Ma, Ke, Xi, null, Chen, null, Hu, Derek Hao, Fu, Yun
Vision Transformers (ViT) is known for its scalability. In this work, we target to scale down a ViT to fit in an environment with dynamic-changing resource constraints. We observe that smaller ViTs are intrinsically the sub-networks of a larger ViT with different widths. Thus, we propose a general framework, named Scala, to enable a single network to represent multiple smaller ViTs with flexible inference capability, which aligns with the inherent design of ViT to vary from widths. Concretely, Scala activates several subnets during training, introduces Isolated Activation to disentangle the smallest sub-network from other subnets, and leverages Scale Coordination to ensure each sub-network receives simplified, steady, and accurate learning objectives. Comprehensive empirical validations on different tasks demonstrate that with only one-shot training, Scala learns slimmable representation without modifying the original ViT structure and matches the performance of Separate Training. Compared with the prior art, Scala achieves an average improvement of 1.6% on ImageNet-1K with fewer parameters. Code is available at here.
Audio-Driven Emotional 3D Talking-Head Generation
Wang, Wenqing, Fu, Yun
Audio-driven video portrait synthesis is a crucial and useful technology in virtual human interaction and film-making applications. Recent advancements have focused on improving the image fidelity and lip-synchronization. However, generating accurate emotional expressions is an important aspect of realistic talking-head generation, which has remained underexplored in previous works. We present a novel system in this paper for synthesizing high-fidelity, audio-driven video portraits with accurate emotional expressions. Specifically, we utilize a variational autoencoder (VAE)-based audio-to-motion module to generate facial landmarks. These landmarks are concatenated with emotional embeddings to produce emotional landmarks through our motion-to-emotion module. These emotional landmarks are then used to render realistic emotional talking-head video using a Neural Radiance Fields (NeRF)-based emotion-to-video module. Additionally, we propose a pose sampling method that generates natural idle-state (non-speaking) videos in response to silent audio inputs. Extensive experiments demonstrate that our method obtains more accurate emotion generation with higher fidelity.
Accessing Vision Foundation Models at ImageNet-level Costs
Zhang, Yitian, Ma, Xu, Bai, Yue, Wang, Huan, Fu, Yun
Vision foundation models are renowned for their generalization ability due to massive training data. Nevertheless, they demand tremendous training resources, and the training data is often inaccessible, e.g., CLIP, DINOv2, posing great challenges to developing derivatives that could advance research in this field. In this work, we offer a very simple and general solution, named Proteus, to distill foundation models into smaller equivalents on ImageNet-1K without access to the original training data. Specifically, we remove the designs from conventional knowledge distillation settings that result in dataset bias and present three levels of training objectives, i.e., token, patch, and feature, to maximize the efficacy of knowledge transfer. In this manner, Proteus is trained at ImageNet-level costs with surprising ability, facilitating the accessibility of training foundation models for the broader research community. Leveraging DINOv2-g/14 as the teacher, Proteus-L/14 matches the performance of the Oracle method DINOv2-L/14 (142M training data) across 15 benchmarks and outperforms other vision foundation models including CLIP-L/14 (400M), OpenCLIP-L/14 (400M/2B) and SynCLR-L/14 (600M). Code is available at here.
SoupLM: Model Integration in Large Language and Multi-Modal Models
Bai, Yue, Zhang, Zichen, Lu, Jiasen, Fu, Yun
Training large language models (LLMs) and multimodal LLMs necessitates significant computing resources, and existing publicly available LLMs are typically pre-trained on diverse, privately curated datasets spanning various tasks. For instance, LLaMA, Vicuna, and LLaVA are three LLM variants trained with LLaMA base models using very different training recipes, tasks, and data modalities. The training cost and complexity for such LLM variants grow rapidly. In this study, we propose to use a soup strategy to assemble these LLM variants into a single well-generalized multimodal LLM (SoupLM) in a cost-efficient manner. Assembling these LLM variants efficiently brings knowledge and specialities trained from different domains and data modalities into an integrated one (e.g., chatbot speciality from user-shared conversations for Vicuna, and visual capacity from vision-language data for LLaVA), therefore, to avoid computing costs of repetitive training on several different domains. We propose series of soup strategies to systematically benchmark performance gains across various configurations, and probe the soup behavior across base models in the interpolation space.
Through the Theory of Mind's Eye: Reading Minds with Multimodal Video Large Language Models
Chen, Zhawnen, Wang, Tianchun, Wang, Yizhou, Kosinski, Michal, Zhang, Xiang, Fu, Yun, Li, Sheng
Can large multimodal models have a human-like ability for emotional and social reasoning, and if so, how does it work? Recent research has discovered emergent theory-of-mind (ToM) reasoning capabilities in large language models (LLMs). LLMs can reason about people's mental states by solving various text-based ToM tasks that ask questions about the actors' ToM (e.g., human belief, desire, intention). However, human reasoning in the wild is often grounded in dynamic scenes across time. Thus, we consider videos a new medium for examining spatio-temporal ToM reasoning ability. Specifically, we ask explicit probing questions about videos with abundant social and emotional reasoning content. We develop a pipeline for multimodal LLM for ToM reasoning using video and text. We also enable explicit ToM reasoning by retrieving key frames for answering a ToM question, which reveals how multimodal LLMs reason about ToM.