Fu, Yiwei
Jogging the Memory of Unlearned Model Through Targeted Relearning Attack
Hu, Shengyuan, Fu, Yiwei, Wu, Zhiwei Steven, Smith, Virginia
Machine unlearning is a promising approach to mitigate undesirable memorization of training data in ML models. However, in this work we show that existing approaches for unlearning in LLMs are surprisingly susceptible to a simple set of targeted relearning attacks. With access to only a small and potentially loosely related set of data, we find that we can 'jog' the memory of unlearned models to reverse the effects of unlearning. We formalize this unlearning-relearning pipeline, explore the attack across three popular unlearning benchmarks, and discuss future directions and guidelines that result from our study.
One Masked Model is All You Need for Sensor Fault Detection, Isolation and Accommodation
Fu, Yiwei, Yan, Weizhong
Accurate and reliable sensor measurements are critical for ensuring the safety and longevity of complex engineering systems such as wind turbines. In this paper, we propose a novel framework for sensor fault detection, isolation, and accommodation (FDIA) using masked models and self-supervised learning. Our proposed approach is a general time series modeling approach that can be applied to any neural network (NN) model capable of sequence modeling, and captures the complex spatio-temporal relationships among different sensors. During training, the proposed masked approach creates a random mask, which acts like a fault, for one or more sensors, making the training and inference task unified: finding the faulty sensors and correcting them. We validate our proposed technique on both a public dataset and a real-world dataset from GE offshore wind turbines, and demonstrate its effectiveness in detecting, diagnosing and correcting sensor faults. The masked model not only simplifies the overall FDIA pipeline, but also outperforms existing approaches. Our proposed technique has the potential to significantly improve the accuracy and reliability of sensor measurements in complex engineering systems in real-time, and could be applied to other types of sensors and engineering systems in the future. We believe that our proposed framework can contribute to the development of more efficient and effective FDIA techniques for a wide range of applications.
Masked Multi-Step Probabilistic Forecasting for Short-to-Mid-Term Electricity Demand
Fu, Yiwei, Virani, Nurali, Wang, Honggang
Predicting the demand for electricity with uncertainty helps in planning and operation of the grid to provide reliable supply of power to the consumers. Machine learning (ML)-based demand forecasting approaches can be categorized into (1) sample-based approaches, where each forecast is made independently, and (2) time series regression approaches, where some historical load and other feature information is used. When making a short-to-mid-term electricity demand forecast, some future information is available, such as the weather forecast and calendar variables. However, in existing forecasting models this future information is not fully incorporated. To overcome this limitation of existing approaches, we propose Masked Multi-Step Multivariate Probabilistic Forecasting (MMMPF), a novel and general framework to train any neural network model capable of generating a sequence of outputs, that combines both the temporal information from the past and the known information about the future to make probabilistic predictions. Experiments are performed on a real-world dataset for short-to-mid-term electricity demand forecasting for multiple regions and compared with various ML methods. They show that the proposed MMMPF framework outperforms not only sample-based methods but also existing time-series forecasting models with the exact same base models. Models trainded with MMMPF can also generate desired quantiles to capture uncertainty and enable probabilistic planning for grid of the future.
Multi-Agent Learning of Numerical Methods for Hyperbolic PDEs with Factored Dec-MDP
Fu, Yiwei, Kapilavai, Dheeraj S. K., Way, Elliot
Factored decentralized Markov decision process (Dec-MDP) is a framework for modeling sequential decision making problems in multi-agent systems. In this paper, we formalize the learning of numerical methods for hyperbolic partial differential equations (PDEs), specifically the Weighted Essentially Non-Oscillatory (WENO) scheme, as a factored Dec-MDP problem. We show that different reward formulations lead to either reinforcement learning (RL) or behavior cloning, and a homogeneous policy could be learned for all agents under the RL formulation with a policy gradient algorithm. Because the trained agents only act on their local observations, the multi-agent system can be used as a general numerical method for hyperbolic PDEs and generalize to different spatial discretizations, episode lengths, dimensions, and even equation types.