Goto

Collaborating Authors

 Fu, Xiang


MOFDiff: Coarse-grained Diffusion for Metal-Organic Framework Design

arXiv.org Artificial Intelligence

Metal-organic frameworks (MOFs) are of immense interest in applications such as gas storage and carbon capture due to their exceptional porosity and tunable chemistry. Their modular nature has enabled the use of template-based methods to generate hypothetical MOFs by combining molecular building blocks in accordance with known network topologies. However, the ability of these methods to identify top-performing MOFs is often hindered by the limited diversity of the resulting chemical space. In this work, we propose MOFDiff: a coarse-grained (CG) diffusion model that generates CG MOF structures through a denoising diffusion process over the coordinates and identities of the building blocks. The all-atom MOF structure is then determined through a novel assembly algorithm. Equivariant graph neural networks are used for the diffusion model to respect the permutational and roto-translational symmetries. We comprehensively evaluate our model's capability to generate valid and novel MOF structures and its effectiveness in designing outstanding MOF materials for carbon capture applications with molecular simulations.


Experimental quantum natural gradient optimization in photonics

arXiv.org Artificial Intelligence

Variational quantum algorithms (VQAs) combining the advantages of parameterized quantum circuits and classical optimizers, promise practical quantum applications in the Noisy Intermediate-Scale Quantum era. The performance of VQAs heavily depends on the optimization method. Compared with gradient-free and ordinary gradient descent methods, the quantum natural gradient (QNG), which mirrors the geometric structure of the parameter space, can achieve faster convergence and avoid local minima more easily, thereby reducing the cost of circuit executions. We utilized a fully programmable photonic chip to experimentally estimate the QNG in photonics for the first time. We obtained the dissociation curve of the He-H$^+$ cation and achieved chemical accuracy, verifying the outperformance of QNG optimization on a photonic device. Our work opens up a vista of utilizing QNG in photonics to implement practical near-term quantum applications.


Quantum generative adversarial learning in photonics

arXiv.org Artificial Intelligence

Quantum Generative Adversarial Networks (QGANs), an intersection of quantum computing and machine learning, have attracted widespread attention due to their potential advantages over classical analogs. However, in the current era of Noisy Intermediate-Scale Quantum (NISQ) computing, it is essential to investigate whether QGANs can perform learning tasks on near-term quantum devices usually affected by noise and even defects. In this Letter, using a programmable silicon quantum photonic chip, we experimentally demonstrate the QGAN model in photonics for the first time, and investigate the effects of noise and defects on its performance. Our results show that QGANs can generate high-quality quantum data with a fidelity higher than 90\%, even under conditions where up to half of the generator's phase shifters are damaged, or all of the generator and discriminator's phase shifters are subjected to phase noise up to 0.04$\pi$. Our work sheds light on the feasibility of implementing QGANs on NISQ-era quantum hardware.


Simulate Time-integrated Coarse-grained Molecular Dynamics with Multi-Scale Graph Networks

arXiv.org Artificial Intelligence

Molecular dynamics (MD) simulation is essential for various scientific domains but computationally expensive. Learning-based force fields have made significant progress in accelerating ab-initio MD simulation but are not fast enough for many real-world applications due to slow inference for large systems and small time steps (femtosecond-level). We aim to address these challenges by learning a multi-scale graph neural network that directly simulates coarse-grained MD with a very large time step (nanosecond-level) and a novel refinement module based on diffusion models to mitigate simulation instability. The effectiveness of our method is demonstrated in two complex systems: single-chain coarse-grained polymers and multi-component Li-ion polymer electrolytes. For evaluation, we simulate trajectories much longer than the training trajectories for systems with different chemical compositions that the model is not trained on. Structural and dynamical properties can be accurately recovered at several orders of magnitude higher speed than classical force fields by getting out of the femtosecond regime.


Forces are not Enough: Benchmark and Critical Evaluation for Machine Learning Force Fields with Molecular Simulations

arXiv.org Artificial Intelligence

Molecular dynamics (MD) simulation techniques are widely used for various natural science applications. Increasingly, machine learning (ML) force field (FF) models begin to replace ab-initio simulations by predicting forces directly from atomic structures. Despite significant progress in this area, such techniques are primarily benchmarked by their force/energy prediction errors, even though the practical use case would be to produce realistic MD trajectories. We aim to fill this gap by introducing a novel benchmark suite for learned MD simulation. We curate representative MD systems, including water, organic molecules, a peptide, and materials, and design evaluation metrics corresponding to the scientific objectives of respective systems. We benchmark a collection of state-of-the-art (SOTA) ML FF models and illustrate, in particular, how the commonly benchmarked force accuracy is not well aligned with relevant simulation metrics. We demonstrate when and how selected SOTA methods fail, along with offering directions for further improvement. Specifically, we identify stability as a key metric for ML models to improve. Our benchmark suite comes with a comprehensive open-source codebase for training and simulation with ML FFs to facilitate future work.


Learning to Jump from Pixels

arXiv.org Artificial Intelligence

One of the grand challenges in robotics is to construct legged systems that can successfully navigate novel and complex landscapes. Recent work has made impressive strides toward the blind traversal of a wide diversity of natural and man-made terrains [1, 2]. Blind walkers primarily rely on proprioception and robust control schemes to achieve sturdy locomotion in challenging conditions including snow, thick vegetation, and slippery mud. The downside of blindness is the inability to execute motions that anticipate the land surface in front of the robot. This is especially prohibitive on terrains with significant elevation discontinuities. For instance, crossing a wide gap requires the robot to jump, which cannot be initiated without knowing where and how wide the gap is. Without vision, even the most robust system would either step in the gap and fall or otherwise treat the gap as an obstacle and stop. This inability to plan results in conservative behavior that is unable to achieve the energy efficiency or the speed afforded by advanced hardware.


Learning Task Informed Abstractions

arXiv.org Artificial Intelligence

Current model-based reinforcement learning methods struggle when operating from complex visual scenes due to their inability to prioritize task-relevant features. To mitigate this problem, we propose learning Task Informed Abstractions (TIA) that explicitly separates reward-correlated visual features from distractors. For learning TIA, we introduce the formalism of Task Informed MDP (TiMDP) that is realized by training two models that learn visual features via cooperative reconstruction, but one model is adversarially dissociated from the reward signal. Empirical evaluation shows that TIA leads to significant performance gains over state-of-the-art methods on many visual control tasks where natural and unconstrained visual distractions pose a formidable challenge.


Modeling and Analysis of Tagging Networks in Stack Exchange Communities

arXiv.org Machine Learning

Large Question-and-Answer (Q&A) platforms support diverse knowledge curation on the Web. While researchers have studied user behavior on the platforms in a variety of contexts, there is relatively little insight into important by-products of user behavior that also encode knowledge. Here, we analyze and model the macroscopic structure of tags applied by users to annotate and catalog questions, using a collection of 168 Stack Exchange websites. We find striking similarity in tagging structure across these Stack Exchange communities, even though each community evolves independently (albeit under similar guidelines). Using our empirical findings, we develop a simple generative model that creates random bipartite graphs of tags and questions. Our model accounts for the tag frequency distribution but does not explicitly account for co-tagging correlations. Even under these constraints, we demonstrate empirically and theoretically that our model can reproduce a number of statistical properties of the co-tagging graph that links tags appearing in the same post.