Fu, Tingchen
Same Question, Different Words: A Latent Adversarial Framework for Prompt Robustness
Fu, Tingchen, Barez, Fazl
Insensitivity to semantically-preserving variations of prompts (paraphrases) is crucial for reliable behavior and real-world deployment of large language models. However, language models exhibit significant performance degradation when faced with semantically equivalent but differently phrased prompts, and existing solutions either depend on trial-and-error prompt engineering or require computationally expensive inference-time algorithms. In this study, built on the key insight that worst-case prompts exhibit a drift in embedding space, we present Latent Adversarial Paraphrasing (LAP), a dual-loop adversarial framework: the inner loop trains a learnable perturbation to serve as a "latent continuous paraphrase" while preserving semantics through Lagrangian regulation, and the outer loop optimizes the language model parameters on these perturbations. We conduct extensive experiments to demonstrate the effectiveness of LAP across multiple LLM architectures on the RobustAlpaca benchmark with a 0.5%-4% absolution improvement on worst-case win-rate compared with vanilla supervised fine-tuning.
From Drafts to Answers: Unlocking LLM Potential via Aggregation Fine-Tuning
Li, Yafu, Wang, Zhilin, Fu, Tingchen, Cui, Ganqu, Yang, Sen, Cheng, Yu
Scaling data and model size has been proven effective for boosting the performance of large language models. In addition to training-time scaling, recent studies have revealed that increasing test-time computational resources can further improve performance. In this work, we introduce Aggregation Fine-Tuning (AFT), a supervised finetuning paradigm where the model learns to synthesize multiple draft responses, referred to as proposals, into a single, refined answer, termed aggregation. At inference time, a propose-and-aggregate strategy further boosts performance by iteratively generating proposals and aggregating them. Empirical evaluations on benchmark datasets show that AFT-trained models substantially outperform standard SFT. Notably, an AFT model, fine-tuned from Llama3.1-8B-Base with only 64k data, achieves a 41.3% LC win rate on AlpacaEval 2, surpassing significantly larger LLMs such as Llama3.1-405B-Instruct and GPT4. By combining sequential refinement and parallel sampling, the propose-and-aggregate framework scales inference-time computation in a flexible manner. Overall, These findings position AFT as a promising approach to unlocking additional capabilities of LLMs without resorting to increasing data volume or model size.
Open Problems in Machine Unlearning for AI Safety
Barez, Fazl, Fu, Tingchen, Prabhu, Ameya, Casper, Stephen, Sanyal, Amartya, Bibi, Adel, O'Gara, Aidan, Kirk, Robert, Bucknall, Ben, Fist, Tim, Ong, Luke, Torr, Philip, Lam, Kwok-Yan, Trager, Robert, Krueger, David, Mindermann, Sรถren, Hernandez-Orallo, Josรฉ, Geva, Mor, Gal, Yarin
As AI systems become more capable, widely deployed, and increasingly autonomous in critical areas such as cybersecurity, biological research, and healthcare, ensuring their safety and alignment with human values is paramount. Machine unlearning -- the ability to selectively forget or suppress specific types of knowledge -- has shown promise for privacy and data removal tasks, which has been the primary focus of existing research. More recently, its potential application to AI safety has gained attention. In this paper, we identify key limitations that prevent unlearning from serving as a comprehensive solution for AI safety, particularly in managing dual-use knowledge in sensitive domains like cybersecurity and chemical, biological, radiological, and nuclear (CBRN) safety. In these contexts, information can be both beneficial and harmful, and models may combine seemingly harmless information for harmful purposes -- unlearning this information could strongly affect beneficial uses. We provide an overview of inherent constraints and open problems, including the broader side effects of unlearning dangerous knowledge, as well as previously unexplored tensions between unlearning and existing safety mechanisms. Finally, we investigate challenges related to evaluation, robustness, and the preservation of safety features during unlearning. By mapping these limitations and open challenges, we aim to guide future research toward realistic applications of unlearning within a broader AI safety framework, acknowledging its limitations and highlighting areas where alternative approaches may be required.
PoisonBench: Assessing Large Language Model Vulnerability to Data Poisoning
Fu, Tingchen, Sharma, Mrinank, Torr, Philip, Cohen, Shay B., Krueger, David, Barez, Fazl
Preference learning is a central component for aligning current LLMs, but this process can be vulnerable to data poisoning attacks. To address this concern, we introduce PoisonBench, a benchmark for evaluating large language models' susceptibility to data poisoning during preference learning. Data poisoning attacks can manipulate large language model responses to include hidden malicious content or biases, potentially causing the model to generate harmful or unintended outputs while appearing to function normally. We deploy two distinct attack types across eight realistic scenarios, assessing 21 widely-used models. Our findings reveal concerning trends: (1) Scaling up parameter size does not inherently enhance resilience against poisoning attacks; (2) There exists a log-linear relationship between the effects of the attack and the data poison ratio; (3) The effect of data poisoning can generalize to extrapolated triggers that are not included in the poisoned data. These results expose weaknesses in current preference learning techniques, highlighting the urgent need for more robust defenses against malicious models and data manipulation.
On the Transformations across Reward Model, Parameter Update, and In-Context Prompt
Cai, Deng, Li, Huayang, Fu, Tingchen, Li, Siheng, Xu, Weiwen, Li, Shuaiyi, Cao, Bowen, Zhang, Zhisong, Huang, Xinting, Cui, Leyang, Wang, Yan, Liu, Lemao, Watanabe, Taro, Shi, Shuming
Despite the general capabilities of pre-trained large language models (LLMs), they still need further adaptation to better serve practical applications. In this paper, we demonstrate the interchangeability of three popular and distinct adaptation tools: parameter updating, reward modeling, and in-context prompting. This interchangeability establishes a triangular framework with six transformation directions, each of which facilitates a variety of applications. Our work offers a holistic view that unifies numerous existing studies and suggests potential research directions. We envision our work as a useful roadmap for future research on LLMs.
Disperse-Then-Merge: Pushing the Limits of Instruction Tuning via Alignment Tax Reduction
Fu, Tingchen, Cai, Deng, Liu, Lemao, Shi, Shuming, Yan, Rui
Supervised fine-tuning (SFT) on instruction-following corpus is a crucial approach toward the alignment of large language models (LLMs). However, the performance of LLMs on standard knowledge and reasoning benchmarks tends to suffer from deterioration at the latter stage of the SFT process, echoing the phenomenon of alignment tax. Through our pilot study, we put a hypothesis that the data biases are probably one cause behind the phenomenon. To address the issue, we introduce a simple disperse-then-merge framework. To be concrete, we disperse the instruction-following data into portions and train multiple sub-models using different data portions. Then we merge multiple models into a single one via model merging techniques. Despite its simplicity, our framework outperforms various sophisticated methods such as data curation and training regularization on a series of standard knowledge and reasoning benchmarks.
BBA: Bi-Modal Behavioral Alignment for Reasoning with Large Vision-Language Models
Zhao, Xueliang, Huang, Xinting, Fu, Tingchen, Li, Qintong, Gong, Shansan, Liu, Lemao, Bi, Wei, Kong, Lingpeng
Multimodal reasoning stands as a pivotal capability for large vision-language models (LVLMs). The integration with Domain-Specific Languages (DSL), offering precise visual representations, equips these models with the opportunity to execute more accurate reasoning in complex and professional domains. However, the vanilla Chain-of-Thought (CoT) prompting method faces challenges in effectively leveraging the unique strengths of visual and DSL representations, primarily due to their differing reasoning mechanisms. Additionally, it often falls short in addressing critical steps in multi-step reasoning tasks. To mitigate these challenges, we introduce the \underline{B}i-Modal \underline{B}ehavioral \underline{A}lignment (BBA) prompting method, designed to maximize the potential of DSL in augmenting complex multi-modal reasoning tasks. This method initiates by guiding LVLMs to create separate reasoning chains for visual and DSL representations. Subsequently, it aligns these chains by addressing any inconsistencies, thus achieving a cohesive integration of behaviors from different modalities. Our experiments demonstrate that BBA substantially improves the performance of GPT-4V(ision) on geometry problem solving ($28.34\% \to 34.22\%$), chess positional advantage prediction ($42.08\% \to 46.99\%$) and molecular property prediction ($77.47\% \to 83.52\%$).
Siren's Song in the AI Ocean: A Survey on Hallucination in Large Language Models
Zhang, Yue, Li, Yafu, Cui, Leyang, Cai, Deng, Liu, Lemao, Fu, Tingchen, Huang, Xinting, Zhao, Enbo, Zhang, Yu, Chen, Yulong, Wang, Longyue, Luu, Anh Tuan, Bi, Wei, Shi, Freda, Shi, Shuming
While large language models (LLMs) have demonstrated remarkable capabilities across a range of downstream tasks, a significant concern revolves around their propensity to exhibit hallucinations: LLMs occasionally generate content that diverges from the user input, contradicts previously generated context, or misaligns with established world knowledge. This phenomenon poses a substantial challenge to the reliability of LLMs in real-world scenarios. In this paper, we survey recent efforts on the detection, explanation, and mitigation of hallucination, with an emphasis on the unique challenges posed by LLMs. We present taxonomies of the LLM hallucination phenomena and evaluation benchmarks, analyze existing approaches aiming at mitigating LLM hallucination, and discuss potential directions for future research.