Frost, Nave
Framework for Evaluating Faithfulness of Local Explanations
Dasgupta, Sanjoy, Frost, Nave, Moshkovitz, Michal
Machine learning is an integral part of many human-facing computer systems and is increasingly a key component of decisions that have profound effects on people's lives. There are many dangers that come with this. For instance, statistical models can easily be error-prone in regions of the input space that are not well-reflected in training data but that end up arising in practice. Or they can be excessively complicated in ways that impact their generalization ability. Or they might implicitly make their decisions based on criteria that would not considered acceptable by society. For all these reasons, and many others, it is crucial to have models that are understandable or can explain their predictions to humans [19]. Explanations of a classification system can take many forms, but should accurately reflect the classifier's inner workings.
ExKMC: Expanding Explainable $k$-Means Clustering
Frost, Nave, Moshkovitz, Michal, Rashtchian, Cyrus
Despite the popularity of explainable AI, there is limited work on effective methods for unsupervised learning. We study algorithms for $k$-means clustering, focusing on a trade-off between explainability and accuracy. Following prior work, we use a small decision tree to partition a dataset into $k$ clusters. This enables us to explain each cluster assignment by a short sequence of single-feature thresholds. While larger trees produce more accurate clusterings, they also require more complex explanations. To allow flexibility, we develop a new explainable $k$-means clustering algorithm, ExKMC, that takes an additional parameter $k' \geq k$ and outputs a decision tree with $k'$ leaves. We use a new surrogate cost to efficiently expand the tree and to label the leaves with one of $k$ clusters. We prove that as $k'$ increases, the surrogate cost is non-increasing, and hence, we trade explainability for accuracy. Empirically, we validate that ExKMC produces a low cost clustering, outperforming both standard decision tree methods and other algorithms for explainable clustering. Implementation of ExKMC available at https://github.com/navefr/ExKMC.
Explainable $k$-Means and $k$-Medians Clustering
Dasgupta, Sanjoy, Frost, Nave, Moshkovitz, Michal, Rashtchian, Cyrus
Clustering is a popular form of unsupervised learning for geometric data. Unfortunately, many clustering algorithms lead to cluster assignments that are hard to explain, partially because they depend on all the features of the data in a complicated way. To improve interpretability, we consider using a small decision tree to partition a data set into clusters, so that clusters can be characterized in a straightforward manner. We study this problem from a theoretical viewpoint, measuring cluster quality by the $k$-means and $k$-medians objectives: Must there exist a tree-induced clustering whose cost is comparable to that of the best unconstrained clustering, and if so, how can it be found? In terms of negative results, we show, first, that popular top-down decision tree algorithms may lead to clusterings with arbitrarily large cost, and second, that any tree-induced clustering must in general incur an $\Omega(\log k)$ approximation factor compared to the optimal clustering. On the positive side, we design an efficient algorithm that produces explainable clusters using a tree with $k$ leaves. For two means/medians, we show that a single threshold cut suffices to achieve a constant factor approximation, and we give nearly-matching lower bounds. For general $k \geq 2$, our algorithm is an $O(k)$ approximation to the optimal $k$-medians and an $O(k^2)$ approximation to the optimal $k$-means. Prior to our work, no algorithms were known with provable guarantees independent of dimension and input size.