Goto

Collaborating Authors

 Frellsen, Jes


Learning Energy-Based Models by Self-normalising the Likelihood

arXiv.org Machine Learning

Training an energy-based model (EBM) with maximum likelihood is challenging due to the intractable normalisation constant. Traditional methods rely on expensive Markov chain Monte Carlo (MCMC) sampling to estimate the gradient of logartihm of the normalisation constant. We propose a novel objective called self-normalised log-likelihood (SNL) that introduces a single additional learnable parameter representing the normalisation constant compared to the regular log-likelihood. SNL is a lower bound of the log-likelihood, and its optimum corresponds to both the maximum likelihood estimate of the model parameters and the normalisation constant. We show that the SNL objective is concave in the model parameters for exponential family distributions. Unlike the regular log-likelihood, the SNL can be directly optimised using stochastic gradient techniques by sampling from a crude proposal distribution. We validate the effectiveness of our proposed method on various density estimation tasks as well as EBMs for regression. Our results show that the proposed method, while simpler to implement and tune, outperforms existing techniques.


Debiasing Guidance for Discrete Diffusion with Sequential Monte Carlo

arXiv.org Artificial Intelligence

Discrete diffusion models are a class of generative models that produce samples from an approximated data distribution within a discrete state space. Often, there is a need to target specific regions of the data distribution. Current guidance methods aim to sample from a distribution with mass proportional to $p_0(x_0) p(\zeta|x_0)^\alpha$ but fail to achieve this in practice. We introduce a Sequential Monte Carlo algorithm that generates unbiasedly from this target distribution, utilising the learnt unconditional and guided process. We validate our approach on low-dimensional distributions, controlled images and text generations. For text generation, our method provides strong control while maintaining low perplexity compared to guidance-based approaches.


MolMiner: Transformer architecture for fragment-based autoregressive generation of molecular stories

arXiv.org Artificial Intelligence

Deep generative models for molecular discovery have become a very popular choice in new high-throughput screening paradigms. These models have been developed inheriting from the advances in natural language processing and computer vision, achieving ever greater results. However, generative molecular modelling has unique challenges that are often overlooked. Chemical validity, interpretability of the generation process and flexibility to variable molecular sizes are among some of the remaining challenges for generative models in computational materials design. In this work, we propose an autoregressive approach that decomposes molecular generation into a sequence of discrete and interpretable steps using molecular fragments as units, a 'molecular story'. Enforcing chemical rules in the stories guarantees the chemical validity of the generated molecules, the discrete sequential steps of a molecular story makes the process transparent improving interpretability, and the autoregressive nature of the approach allows the size of the molecule to be a decision of the model. We demonstrate the validity of the approach in a multi-target inverse design of electroactive organic compounds, focusing on the target properties of solubility, redox potential, and synthetic accessibility. Our results show that the model can effectively bias the generation distribution according to the prompted multi-target objective.


EB-NeRD: A Large-Scale Dataset for News Recommendation

arXiv.org Artificial Intelligence

Personalized content recommendations have been pivotal to the content experience in digital media from video streaming to social networks. However, several domain specific challenges have held back adoption of recommender systems in news publishing. To address these challenges, we introduce the Ekstra Bladet News Recommendation Dataset (EB-NeRD). The dataset encompasses data from over a million unique users and more than 37 million impression logs from Ekstra Bladet. It also includes a collection of over 125,000 Danish news articles, complete with titles, abstracts, bodies, and metadata, such as categories. EB-NeRD served as the benchmark dataset for the RecSys '24 Challenge, where it was demonstrated how the dataset can be used to address both technical and normative challenges in designing effective and responsible recommender systems for news publishing. The dataset is available at: https://recsys.eb.dk.


RecSys Challenge 2024: Balancing Accuracy and Editorial Values in News Recommendations

arXiv.org Artificial Intelligence

The RecSys Challenge 2024 aims to advance news recommendation by addressing both the technical and normative challenges inherent in designing effective and responsible recommender systems for news publishing. This paper describes the challenge, including its objectives, problem setting, and the dataset provided by the Danish news publishers Ekstra Bladet and JP/Politikens Media Group ("Ekstra Bladet"). The challenge explores the unique aspects of news recommendation, such as modeling user preferences based on behavior, accounting for the influence of the news agenda on user interests, and managing the rapid decay of news items. Additionally, the challenge embraces normative complexities, investigating the effects of recommender systems on news flow and their alignment with editorial values. We summarize the challenge setup, dataset characteristics, and evaluation metrics. Finally, we announce the winners and highlight their contributions. The dataset is available at: https://recsys.eb.dk.


von Mises Quasi-Processes for Bayesian Circular Regression

arXiv.org Machine Learning

The need for regression models to predict circular values arises in many scientific fields. In this work we explore a family of expressive and interpretable distributions over circle-valued random functions related to Gaussian processes targeting two Euclidean dimensions conditioned on the unit circle. The resulting probability model has connections with continuous spin models in statistical physics. Moreover, its density is very simple and has maximum-entropy, unlike previous Gaussian process-based approaches, which use wrapping or radial marginalization. For posterior inference, we introduce a new Stratonovich-like augmentation that lends itself to fast Markov Chain Monte Carlo sampling. We argue that transductive learning in these models favors a Bayesian approach to the parameters. We present experiments applying this model to the prediction of (i) wind directions and (ii) the percentage of the running gait cycle as a function of joint angles.


Scalable physical source-to-field inference with hypernetworks

arXiv.org Artificial Intelligence

We present a generative model that amortises computation for the field around e.g. gravitational or magnetic sources. Exact numerical calculation has either computational complexity $\mathcal{O}(M\times{}N)$ in the number of sources and field evaluation points, or requires a fixed evaluation grid to exploit fast Fourier transforms. Using an architecture where a hypernetwork produces an implicit representation of the field around a source collection, our model instead performs as $\mathcal{O}(M + N)$, achieves accuracy of $\sim\!4\%-6\%$, and allows evaluation at arbitrary locations for arbitrary numbers of sources, greatly increasing the speed of e.g. physics simulations. We also examine a model relating to the physical properties of the output field and develop two-dimensional examples to demonstrate its application. The code for these models and experiments is available at https://github.com/cmt-dtu-energy/hypermagnetics.


A Continuous Relaxation for Discrete Bayesian Optimization

arXiv.org Machine Learning

To optimize efficiently over discrete data and with only few available target observations is a challenge in Bayesian optimization. We propose a continuous relaxation of the objective function and show that inference and optimization can be computationally tractable. We consider in particular the optimization domain where very few observations and strict budgets exist; motivated by optimizing protein sequences for expensive to evaluate bio-chemical properties. The advantages of our approach are two-fold: the problem is treated in the continuous setting, and available prior knowledge over sequences can be incorporated directly. More specifically, we utilize available and learned distributions over the problem domain for a weighting of the Hellinger distance which yields a covariance function. We show that the resulting acquisition function can be optimized with both continuous or discrete optimization algorithms and empirically assess our method on two bio-chemical sequence optimization tasks.


Internal-Coordinate Density Modelling of Protein Structure: Covariance Matters

arXiv.org Artificial Intelligence

After the recent ground-breaking advances in protein structure prediction, one of the remaining challenges in protein machine learning is to reliably predict distributions of structural states. Parametric models of fluctuations are difficult to fit due to complex covariance structures between degrees of freedom in the protein chain, often causing models to either violate local or global structural constraints. In this paper, we present a new strategy for modelling protein densities in internal coordinates, which uses constraints in 3D space to induce covariance structure between the internal degrees of freedom. We illustrate the potential of the procedure by constructing a variational autoencoder with full covariance output induced by the constraints implied by the conditional mean in 3D, and demonstrate that our approach makes it possible to scale density models of internal coordinates to full protein backbones in two settings: 1) a unimodal setting for proteins exhibiting small fluctuations and limited amounts of available data, and 2) a multimodal setting for larger conformational changes in a high data regime.


Explainability as statistical inference

arXiv.org Artificial Intelligence

A wide variety of model explanation approaches have been proposed in recent years, all guided by very different rationales and heuristics. In this paper, we take a new route and cast interpretability as a statistical inference problem. We propose a general deep probabilistic model designed to produce interpretable predictions. The model parameters can be learned via maximum likelihood, and the method can be adapted to any predictor network architecture and any type of prediction problem. Our method is a case of amortized interpretability models, where a neural network is used as a selector to allow for fast interpretation at inference time. Several popular interpretability methods are shown to be particular cases of regularised maximum likelihood for our general model. We propose new datasets with ground truth selection which allow for the evaluation of the features importance map. Using these datasets, we show experimentally that using multiple imputation provides more reasonable interpretations.