Frank, Michael
Improving Energy Efficiency in Manufacturing: A Novel Expert System Shell
Ioshchikhes, Borys, Frank, Michael, Joseph, Tresa Maria, Weigold, Matthias
Expert systems are effective tools for automatically identifying energy efficiency potentials in manufacturing, thereby contributing significantly to global climate targets. These systems analyze energy data, pinpoint inefficiencies, and recommend optimizations to reduce energy consumption. Beyond systematic approaches for developing expert systems, there is a pressing need for simple and rapid software implementation solutions. Expert system shells, which facilitate the swift development and deployment of expert systems, are crucial tools in this process. They provide a template that simplifies the creation and integration of expert systems into existing manufacturing processes. This paper provides a comprehensive comparison of existing expert system shells regarding their suitability for improving energy efficiency, highlighting significant gaps and limitations. To address these deficiencies, we introduce a novel expert system shell, implemented in Jupyter Notebook, that provides a flexible and easily integrable solution for expert system development.
A systematic review on expert systems for improving energy efficiency in the manufacturing industry
Ioshchikhes, Borys, Frank, Michael, Weigold, Matthias
Against the backdrop of the European Union's commitment to achieve climate neutrality by 2050, efforts to improve energy efficiency are being intensified. The manufacturing industry is a key focal point of these endeavors due to its high final electrical energy demand, while simultaneously facing a growing shortage of skilled workers crucial for meeting established goals. Expert systems (ESs) offer the chance to overcome this challenge by automatically identifying potential energy efficiency improvements and thereby playing a significant role in reducing electricity consumption. This paper systematically reviews state-of-the-art approaches of ESs aimed at improving energy efficiency in industry, with a focus on manufacturing. The literature search yields 1692 results, of which 54 articles published between 1987 and 2023 are analyzed in depth. These publications are classified according to the system boundary, manufacturing type, application perspective, application purpose, ES type, and industry. Furthermore, we examine the structure, implementation, utilization, and development of ESs in this context. Through this analysis, the review reveals research gaps, pointing toward promising topics for future research.
Neural scaling laws for phenotypic drug discovery
Linsley, Drew, Griffin, John, Brown, Jason Parker, Roose, Adam N, Frank, Michael, Linsley, Peter, Finkbeiner, Steven, Linsley, Jeremy
Recent breakthroughs by deep neural networks (DNNs) in natural language processing (NLP) and computer vision have been driven by a scale-up of models and data rather than the discovery of novel computing paradigms. Here, we investigate if scale can have a similar impact for models designed to aid small molecule drug discovery. We address this question through a large-scale and systematic analysis of how DNN size, data diet, and learning routines interact to impact accuracy on our Phenotypic Chemistry Arena (Pheno-CA) benchmark: a diverse set of drug development tasks posed on image-based high content screening data. Surprisingly, we find that DNNs explicitly supervised to solve tasks in the Pheno-CA do not continuously improve as their data and model size is scaled-up. To address this issue, we introduce a novel precursor task, the Inverse Biological Process (IBP), which is designed to resemble the causal objective functions that have proven successful for NLP. We indeed find that DNNs first trained with IBP then probed for performance on the Pheno-CA significantly outperform task-supervised DNNs. More importantly, the performance of these IBP-trained DNNs monotonically improves with data and model scale. Our findings reveal that the DNN ingredients needed to accurately solve small molecule drug development tasks are already in our hands, and project how much more experimental data is needed to achieve any desired level of improvement. We release our Pheno-CA benchmark and code to encourage further study of neural scaling laws for small molecule drug discovery.
Learning and using language via recursive pragmatic reasoning about other agents
Smith, Nathaniel J., Goodman, Noah, Frank, Michael
Michael C. Frank Stanford University Language users are remarkably good at making inferences about speakers' intentions incontext, and children learning their native language also display substantial skill in acquiring the meanings of unknown words. These two cases are deeply related: Language users invent new terms in conversation, and language learners learn the literal meanings of words based on their pragmatic inferences about how those words are used. While pragmatic inference and word learning have both been independently characterized in probabilistic terms, no current work unifies these two. We describe a model in which language learners assume that they jointly approximate a shared, external lexicon and reason recursively about the goals of others in using this lexicon. This model captures phenomena in word learning and pragmatic inference; it additionally leads to insights about the emergence ofcommunicative systems in conversation and the mechanisms by which pragmatic inferences become incorporated into word meanings.