Fournier-Viger, Philippe
$\mathcal{G}^2Pxy$: Generative Open-Set Node Classification on Graphs with Proxy Unknowns
Zhang, Qin, Shi, Zelin, Zhang, Xiaolin, Chen, Xiaojun, Fournier-Viger, Philippe, Pan, Shirui
Node classification is the task of predicting the labels of unlabeled nodes in a graph. State-of-the-art methods based on graph neural networks achieve excellent performance when all labels are available during training. But in real-life, models are often applied on data with new classes, which can lead to massive misclassification and thus significantly degrade performance. Hence, developing open-set classification methods is crucial to determine if a given sample belongs to a known class. Existing methods for open-set node classification generally use transductive learning with part or all of the features of real unseen class nodes to help with open-set classification. In this paper, we propose a novel generative open-set node classification method, i.e. $\mathcal{G}^2Pxy$, which follows a stricter inductive learning setting where no information about unknown classes is available during training and validation. Two kinds of proxy unknown nodes, inter-class unknown proxies and external unknown proxies are generated via mixup to efficiently anticipate the distribution of novel classes. Using the generated proxies, a closed-set classifier can be transformed into an open-set one, by augmenting it with an extra proxy classifier. Under the constraints of both cross entropy loss and complement entropy loss, $\mathcal{G}^2Pxy$ achieves superior effectiveness for unknown class detection and known class classification, which is validated by experiments on benchmark graph datasets. Moreover, $\mathcal{G}^2Pxy$ does not have specific requirement on the GNN architecture and shows good generalizations.
How Emotional Mechanism Helps Episodic Learning in a Cognitive Agent
Faghihi, Usef, Fournier-Viger, Philippe, Nkambou, Roger, Poirier, Pierre, Mayers, Andre
In this paper we propose the CTS (Concious Tutoring System) technology, a biologically plausible cognitive agent based on human brain functions.This agent is capable of learning and remembering events and any related information such as corresponding procedures, stimuli and their emotional valences. Our proposed episodic memory and episodic learning mechanism are closer to the current multiple-trace theory in neuroscience, because they are inspired by it [5] contrary to other mechanisms that are incorporated in cognitive agents. This is because in our model emotions play a role in the encoding and remembering of events. This allows the agent to improve its behavior by remembering previously selected behaviors which are influenced by its emotional mechanism. Moreover, the architecture incorporates a realistic memory consolidation process based on a data mining algorithm.