Forgione, Marco
dynoGP: Deep Gaussian Processes for dynamic system identification
Benavoli, Alessio, Piga, Dario, Forgione, Marco, Zaffalon, Marco
In this work, we present a novel approach to system identification for dynamical systems, based on a specific class of Deep Gaussian Processes (Deep GPs). These models are constructed by interconnecting linear dynamic GPs (equivalent to stochastic linear time-invariant dynamical systems) and static GPs (to model static nonlinearities). Our approach combines the strengths of data-driven methods, such as those based on neural network architectures, with the ability to output a probability distribution. This offers a more comprehensive framework for system identification that includes uncertainty quantification. Using both simulated and real-world data, we demonstrate the effectiveness of the proposed approach.
Integrating Reinforcement Learning with Foundation Models for Autonomous Robotics: Methods and Perspectives
Moroncelli, Angelo, Soni, Vishal, Shahid, Asad Ali, Maccarini, Marco, Forgione, Marco, Piga, Dario, Spahiu, Blerina, Roveda, Loris
Foundation models (FMs), large deep learning models pre-trained on vast, unlabeled datasets, exhibit powerful capabilities in understanding complex patterns and generating sophisticated outputs. However, they often struggle to adapt to specific tasks. Reinforcement learning (RL), which allows agents to learn through interaction and feedback, offers a compelling solution. Integrating RL with FMs enables these models to achieve desired outcomes and excel at particular tasks. Additionally, RL can be enhanced by leveraging the reasoning and generalization capabilities of FMs. This synergy is revolutionizing various fields, including robotics. FMs, rich in knowledge and generalization, provide robots with valuable information, while RL facilitates learning and adaptation through real-world interactions. This survey paper comprehensively explores this exciting intersection, examining how these paradigms can be integrated to advance robotic intelligence. We analyze the use of foundation models as action planners, the development of robotics-specific foundation models, and the mutual benefits of combining FMs with RL. Furthermore, we present a taxonomy of integration approaches, including large language models, vision-language models, diffusion models, and transformer-based RL models. We also explore how RL can utilize world representations learned from FMs to enhance robotic task execution. Our survey aims to synthesize current research and highlight key challenges in robotic reasoning and control, particularly in the context of integrating FMs and RL--two rapidly evolving technologies. By doing so, we seek to spark future research and emphasize critical areas that require further investigation to enhance robotics. We provide an updated collection of papers based on our taxonomy, accessible on our open-source project website at: https://github.com/clmoro/Robotics-RL-FMs-Integration.
Enhanced Transformer architecture for in-context learning of dynamical systems
Rufolo, Matteo, Piga, Dario, Maroni, Gabriele, Forgione, Marco
Recently introduced by some of the authors, the in-context identification paradigm aims at estimating, offline and based on synthetic data, a meta-model that describes the behavior of a whole class of systems. Once trained, this meta-model is fed with an observed input/output sequence (context) generated by a real system to predict its behavior in a zero-shot learning fashion. In this paper, we enhance the original meta-modeling framework through three key innovations: by formulating the learning task within a probabilistic framework; by managing non-contiguous context and query windows; and by adopting recurrent patching to effectively handle long context sequences. The efficacy of these modifications is demonstrated through a numerical example focusing on the Wiener-Hammerstein system class, highlighting the model's enhanced performance and scalability.
Model order reduction of deep structured state-space models: A system-theoretic approach
Forgione, Marco, Mejari, Manas, Piga, Dario
With a specific emphasis on control design objectives, achieving accurate system modeling with limited complexity is crucial in parametric system identification. The recently introduced deep structured state-space models (SSM), which feature linear dynamical blocks as key constituent components, offer high predictive performance. However, the learned representations often suffer from excessively large model orders, which render them unsuitable for control design purposes. The current paper addresses this challenge by means of system-theoretic model order reduction techniques that target the linear dynamical blocks of SSMs. We introduce two regularization terms which can be incorporated into the training loss for improved model order reduction. In particular, we consider modal $\ell_1$ and Hankel nuclear norm regularization to promote sparsity, allowing one to retain only the relevant states without sacrificing accuracy. The presented regularizers lead to advantages in terms of parsimonious representations and faster inference resulting from the reduced order models. The effectiveness of the proposed methodology is demonstrated using real-world ground vibration data from an aircraft.
Synthetic data generation for system identification: leveraging knowledge transfer from similar systems
Piga, Dario, Rufolo, Matteo, Maroni, Gabriele, Mejari, Manas, Forgione, Marco
This paper addresses the challenge of overfitting in the learning of dynamical systems by introducing a novel approach for the generation of synthetic data, aimed at enhancing model generalization and robustness in scenarios characterized by data scarcity. Central to the proposed methodology is the concept of knowledge transfer from systems within the same class. Specifically, synthetic data is generated through a pre-trained meta-model that describes a broad class of systems to which the system of interest is assumed to belong. Training data serves a dual purpose: firstly, as input to the pre-trained meta model to discern the system's dynamics, enabling the prediction of its behavior and thereby generating synthetic output sequences for new input sequences; secondly, in conjunction with synthetic data, to define the loss function used for model estimation. A validation dataset is used to tune a scalar hyper-parameter balancing the relative importance of training and synthetic data in the definition of the loss function. The same validation set can be also used for other purposes, such as early stopping during the training, fundamental to avoid overfitting in case of small-size training datasets. The efficacy of the approach is shown through a numerical example that highlights the advantages of integrating synthetic data into the system identification process.
From system models to class models: An in-context learning paradigm
Forgione, Marco, Pura, Filippo, Piga, Dario
Is it possible to understand the intricacies of a dynamical system not solely from its input/output pattern, but also by observing the behavior of other systems within the same class? This central question drives the study presented in this paper. In response to this query, we introduce a novel paradigm for system identification, addressing two primary tasks: one-step-ahead prediction and multi-step simulation. Unlike conventional methods, we do not directly estimate a model for the specific system. Instead, we learn a meta model that represents a class of dynamical systems. This meta model is trained on a potentially infinite stream of synthetic data, generated by simulators whose settings are randomly extracted from a probability distribution. When provided with a context from a new system-specifically, an input/output sequence-the meta model implicitly discerns its dynamics, enabling predictions of its behavior. The proposed approach harnesses the power of Transformers, renowned for their \emph{in-context learning} capabilities. For one-step prediction, a GPT-like decoder-only architecture is utilized, whereas the simulation problem employs an encoder-decoder structure. Initial experimental results affirmatively answer our foundational question, opening doors to fresh research avenues in system identification.
On the adaptation of in-context learners for system identification
Piga, Dario, Pura, Filippo, Forgione, Marco
Abstract: In-context system identification aims at constructing meta-models to describe classes of systems, differently from traditional approaches that model single systems. This paradigm facilitates the leveraging of knowledge acquired from observing the behaviour of different, yet related dynamics. Through numerical examples, we demonstrate how meta-model adaptation can enhance predictive performance in three realistic scenarios: tailoring the meta-model to describe a specific system rather than a class; extending the meta-model to capture the behaviour of systems beyond the initial training class; and recalibrating the model for new prediction tasks. Results highlight the effectiveness of meta-model adaptation to achieve a more robust and versatile meta-learning framework for system identification. Keywords: System identification, Machine Learning, Deep Learning, Neural Networks, Meta-learning, Model adaptation. 1. INTRODUCTION of estimating a model of a specific dynamical system, a meta-model describing a whole class of such systems is learned.
Neural State-Space Models: Empirical Evaluation of Uncertainty Quantification
Forgione, Marco, Piga, Dario
Effective quantification of uncertainty is an essential and still missing step towards a greater adoption of deep-learning approaches in different applications, including mission-critical ones. In particular, investigations on the predictive uncertainty of deep-learning models describing non-linear dynamical systems are very limited to date. This paper is aimed at filling this gap and presents preliminary results on uncertainty quantification for system identification with neural state-space models. We frame the learning problem in a Bayesian probabilistic setting and obtain posterior distributions for the neural network's weights and outputs through approximate inference techniques. Based on the posterior, we construct credible intervals on the outputs and define a surprise index which can effectively diagnose usage of the model in a potentially dangerous out-of-distribution regime, where predictions cannot be trusted.
On the adaptation of recurrent neural networks for system identification
Forgione, Marco, Muni, Aneri, Piga, Dario, Gallieri, Marco
This paper presents a transfer learning approach which enables fast and efficient adaptation of Recurrent Neural Network (RNN) models of dynamical systems. A nominal RNN model is first identified using available measurements. The system dynamics are then assumed to change, leading to an unacceptable degradation of the nominal model performance on the perturbed system. To cope with the mismatch, the model is augmented with an additive correction term trained on fresh data from the new dynamic regime. The correction term is learned through a Jacobian Feature Regression (JFR) method defined in terms of the features spanned by the model's Jacobian with respect to its nominal parameters. A non-parametric view of the approach is also proposed, which extends recent work on Gaussian Process (GP) with Neural Tangent Kernel (NTK-GP) to the RNN case (RNTK-GP). This can be more efficient for very large networks or when only few data points are available. Implementation aspects for fast and efficient computation of the correction term, as well as the initial state estimation for the RNN model are described. Numerical examples show the effectiveness of the proposed methodology in presence of significant system variations.
Deep learning with transfer functions: new applications in system identification
Piga, Dario, Forgione, Marco, Mejari, Manas
This paper presents a linear dynamical operator described in terms of a rational transfer function, endowed with a well-defined and efficient back-propagation behavior for automatic derivatives computation. The operator enables end-to-end training of structured networks containing linear transfer functions and other differentiable units {by} exploiting standard deep learning software. Two relevant applications of the operator in system identification are presented. The first one consists in the integration of {prediction error methods} in deep learning. The dynamical operator is included as {the} last layer of a neural network in order to obtain the optimal one-step-ahead prediction error. The second one considers identification of general block-oriented models from quantized data. These block-oriented models are constructed by combining linear dynamical operators with static nonlinearities described as standard feed-forward neural networks. A custom loss function corresponding to the log-likelihood of quantized output observations is defined. For gradient-based optimization, the derivatives of the log-likelihood are computed by applying the back-propagation algorithm through the whole network. Two system identification benchmarks are used to show the effectiveness of the proposed methodologies.