Goto

Collaborating Authors

 Flet-Berliac, Yannis


Aya Expanse: Combining Research Breakthroughs for a New Multilingual Frontier

arXiv.org Artificial Intelligence

We introduce the Aya Expanse model family, a new generation of 8B and 32B parameter multilingual language models, aiming to address the critical challenge of developing highly performant multilingual models that match or surpass the capabilities of monolingual models. By leveraging several years of research at Cohere For AI and Cohere, including advancements in data arbitrage, multilingual preference training, and model merging, Aya Expanse sets a new state-of-the-art in multilingual performance. Our evaluations on the Arena-Hard-Auto dataset, translated into 23 languages, demonstrate that Aya Expanse 8B and 32B outperform leading open-weight models in their respective parameter classes, including Gemma 2, Qwen 2.5, and Llama 3.1, achieving up to a 76.6% win-rate. Notably, Aya Expanse 32B outperforms Llama 3.1 70B, a model with twice as many parameters, achieving a 54.0% win-rate. In this short technical report, we present extended evaluation results for the Aya Expanse model family and release their open-weights, together with a new multilingual evaluation dataset m-ArenaHard.


Contrastive Policy Gradient: Aligning LLMs on sequence-level scores in a supervised-friendly fashion

arXiv.org Artificial Intelligence

Reinforcement Learning (RL) has been used to finetune Large Language Models (LLMs) using a reward model trained from preference data, to better align with human judgment. The recently introduced direct alignment methods, which are often simpler, more stable, and computationally lighter, can more directly achieve this. However, these approaches cannot optimize arbitrary rewards, and the preference-based ones are not the only rewards of interest for LLMs (eg., unit tests for code generation or textual entailment for summarization, among others). RL-finetuning is usually done with a variation of policy gradient, which calls for on-policy or near-on-policy samples, requiring costly generations. We introduce Contrastive Policy Gradient, or CoPG, a simple and mathematically principled new RL algorithm that can estimate the optimal policy even from off-policy data. It can be seen as an off-policy policy gradient approach that does not rely on important sampling techniques and highlights the importance of using (the right) state baseline. We show this approach to generalize the direct alignment method IPO (identity preference optimization) and classic policy gradient. We experiment with the proposed CoPG on a toy bandit problem to illustrate its properties, as well as for finetuning LLMs on a summarization task, using a learned reward function considered as ground truth for the purpose of the experiments.


OPERA: Automatic Offline Policy Evaluation with Re-weighted Aggregates of Multiple Estimators

arXiv.org Machine Learning

Offline policy evaluation (OPE) allows us to evaluate and estimate a new sequential decision-making policy's performance by leveraging historical interaction data collected from other policies. Evaluating a new policy online without a confident estimate of its performance can lead to costly, unsafe, or hazardous outcomes, especially in education and healthcare. Several OPE estimators have been proposed in the last decade, many of which have hyperparameters and require training. Unfortunately, choosing the best OPE algorithm for each task and domain is still unclear. In this paper, we propose a new algorithm that adaptively blends a set of OPE estimators given a dataset without relying on an explicit selection using a statistical procedure. We prove that our estimator is consistent and satisfies several desirable properties for policy evaluation. Additionally, we demonstrate that when compared to alternative approaches, our estimator can be used to select higher-performing policies in healthcare and robotics. Our work contributes to improving ease of use for a general-purpose, estimator-agnostic, off-policy evaluation framework for offline RL.


PASTA: Pretrained Action-State Transformer Agents

arXiv.org Artificial Intelligence

Self-supervised learning has brought about a revolutionary paradigm shift in various computing domains, including NLP, vision, and biology. Recent approaches involve pre-training transformer models on vast amounts of unlabeled data, serving as a starting point for efficiently solving downstream tasks. In reinforcement learning, researchers have recently adapted these approaches, developing models pre-trained on expert trajectories. This advancement enables the models to tackle a broad spectrum of tasks, ranging from robotics to recommendation systems. However, existing methods mostly rely on intricate pre-training objectives tailored to specific downstream applications. This paper conducts a comprehensive investigation of models, referred to as pre-trained action-state transformer agents (PASTA). Our study covers a unified methodology and covers an extensive set of general downstream tasks including behavioral cloning, offline RL, sensor failure robustness, and dynamics change adaptation. Our objective is to systematically compare various design choices and offer valuable insights that will aid practitioners in developing robust models. Key highlights of our study include tokenization at the component level for actions and states, the use of fundamental pre-training objectives such as next token prediction or masked language modeling, simultaneous training of models across multiple domains, and the application of various fine-tuning strategies. In this study, the developed models contain fewer than 7 million parameters allowing a broad community to use these models and reproduce our experiments. We hope that this study will encourage further research into the use of transformers with first principle design choices to represent RL trajectories and contribute to robust policy learning. Reinforcement Learning (RL) has emerged as a robust framework for training highly efficient agents to interact with complex environments and learn optimal decision-making policies. RL algorithms aim to devise effective strategies by maximizing cumulative rewards from interactions with the environment.


Waypoint Transformer: Reinforcement Learning via Supervised Learning with Intermediate Targets

arXiv.org Artificial Intelligence

Despite the recent advancements in offline reinforcement learning via supervised learning (RvS) and the success of the decision transformer (DT) architecture in various domains, DTs have fallen short in several challenging benchmarks. The root cause of this underperformance lies in their inability to seamlessly connect segments of suboptimal trajectories. To overcome this limitation, we present a novel approach to enhance RvS methods by integrating intermediate targets. We introduce the Waypoint Transformer (WT), using an architecture that builds upon the DT framework and conditioned on automatically-generated waypoints. The results show a significant increase in the final return compared to existing RvS methods, with performance on par or greater than existing state-of-the-art temporal difference learning-based methods. Additionally, the performance and stability improvements are largest in the most challenging environments and data configurations, including AntMaze Large Play/Diverse and Kitchen Mixed/Partial.


Model-based Offline Reinforcement Learning with Local Misspecification

arXiv.org Artificial Intelligence

We present a model-based offline reinforcement learning policy performance lower bound that explicitly captures dynamics model misspecification and distribution mismatch and we propose an empirical algorithm for optimal offline policy selection. Theoretically, we prove a novel safe policy improvement theorem by establishing pessimism approximations to the value function. Our key insight is to jointly consider selecting over dynamics models and policies: as long as a dynamics model can accurately represent the dynamics of the state-action pairs visited by a given policy, it is possible to approximate the value of that particular policy. We analyze our lower bound in the LQR setting and also show competitive performance to previous lower bounds on policy selection across a set of D4RL tasks.


Data-Efficient Pipeline for Offline Reinforcement Learning with Limited Data

arXiv.org Artificial Intelligence

Offline reinforcement learning (RL) can be used to improve future performance by leveraging historical data. There exist many different algorithms for offline RL, and it is well recognized that these algorithms, and their hyperparameter settings, can lead to decision policies with substantially differing performance. This prompts the need for pipelines that allow practitioners to systematically perform algorithm-hyperparameter selection for their setting. Critically, in most real-world settings, this pipeline must only involve the use of historical data. Inspired by statistical model selection methods for supervised learning, we introduce a task- and method-agnostic pipeline for automatically training, comparing, selecting, and deploying the best policy when the provided dataset is limited in size. In particular, our work highlights the importance of performing multiple data splits to produce more reliable algorithm-hyperparameter selection. While this is a common approach in supervised learning, to our knowledge, this has not been discussed in detail in the offline RL setting. We show it can have substantial impacts when the dataset is small. Compared to alternate approaches, our proposed pipeline outputs higher-performing deployed policies from a broad range of offline policy learning algorithms and across various simulation domains in healthcare, education, and robotics. This work contributes toward the development of a general-purpose meta-algorithm for automatic algorithm-hyperparameter selection for offline RL.


Adversarially Guided Actor-Critic

arXiv.org Artificial Intelligence

Despite definite success in deep reinforcement learning problems, actor-critic algorithms are still confronted with sample inefficiency in complex environments, particularly in tasks where efficient exploration is a bottleneck. These methods consider a policy (the actor) and a value function (the critic) whose respective losses are built using different motivations and approaches. This paper introduces a third protagonist: the adversary. While the adversary mimics the actor by minimizing the KL-divergence between their respective action distributions, the actor, in addition to learning to solve the task, tries to differentiate itself from the adversary predictions. This novel objective stimulates the actor to follow strategies that could not have been correctly predicted from previous trajectories, making its behavior innovative in tasks where the reward is extremely rare. Our experimental analysis shows that the resulting Adversarially Guided Actor-Critic (AGAC) algorithm leads to more exhaustive exploration. Notably, AGAC outperforms current state-of-the-art methods on a set of various hard-exploration and procedurally-generated tasks. Research in deep reinforcement learning (RL) has proven to be successful across a wide range of problems (Silver et al., 2014; Schulman et al., 2016; Lillicrap et al., 2016; Mnih et al., 2016).


Is Standard Deviation the New Standard? Revisiting the Critic in Deep Policy Gradients

arXiv.org Artificial Intelligence

Policy gradient algorithms have proven to be successful in diverse decision making and control tasks. However, these methods suffer from high sample complexity and instability issues. In this paper, we address these challenges by providing a different approach for training the critic in the actor-critic framework. Our work builds on recent studies indicating that traditional actor-critic algorithms do not succeed in fitting the true value function, calling for the need to identify a better objective for the critic. In our method, the critic uses a new state-value (resp. state-action-value) function approximation that learns the relative value of the states (resp. state-action pairs) rather than their absolute value as in conventional actor-critic. We prove the theoretical consistency of the new gradient estimator and observe dramatic empirical improvement across a variety of continuous control tasks and algorithms. Furthermore, we validate our method in tasks with sparse rewards, where we provide experimental evidence and theoretical insights.


High-Dimensional Control Using Generalized Auxiliary Tasks

arXiv.org Machine Learning

A long-standing challenge in reinforcement learning is the design of function approximations and efficient learning algorithms that provide agents with fast training, robust learning , and high performance in complex environments. To this end, the use of prior knowledge, while promising, is often costly and, in essence, challenging to scale up. In contrast, we consider problem knowledge signals, that are any relevant indicator useful to solve a task, e.g., metrics of uncertainty or proactive prediction of future states. Our framework consists of predicting such complementary quantities associated with self-performance assessment and accurate expectations. Therefore, policy and value functions are no longer only optimized for a reward but are learned using environment-agnostic quantities. We propose a generally applicable framework for structuring reinforcement learning by injecting problem knowledge in policy gradient updates. In this paper: (a) We introduce MERL, our multi-head reinforcement learning framework for generalized auxiliary tasks. (b) We conduct experiments across a variety of standard benchmark environments. Our results show that MERL improves performance for on-and off-policy methods. (c) We show that MERL also improves transfer learning on a set of challenging tasks. (d) We investigate how our approach addresses the problem of reward sparsity and pushes the function approximations into a better-constrained parameter configuration.