Goto

Collaborating Authors

 Fidan, Baris


Dual Agent Learning Based Aerial Trajectory Tracking

arXiv.org Artificial Intelligence

This paper presents a novel reinforcement learning framework for trajectory tracking of unmanned aerial vehicles in cluttered environments using a dual-agent architecture. Traditional optimization methods for trajectory tracking face significant computational challenges and lack robustness in dynamic environments. Our approach employs deep reinforcement learning (RL) to overcome these limitations, leveraging 3D pointcloud data to perceive the environment without relying on memory-intensive obstacle representations like occupancy grids. The proposed system features two RL agents: one for predicting UAV velocities to follow a reference trajectory and another for managing collision avoidance in the presence of obstacles. This architecture ensures real-time performance and adaptability to uncertainties. We demonstrate the efficacy of our approach through simulated and real-world experiments, highlighting improvements over state-of-the-art RL and optimization-based methods. Additionally, a curriculum learning paradigm is employed to scale the algorithms to more complex environments, ensuring robust trajectory tracking and obstacle avoidance in both static and dynamic scenarios.


A Multi-Player Potential Game Approach for Sensor Network Localization with Noisy Measurements

arXiv.org Artificial Intelligence

Sensor network localization (SNL) is a challenging problem due to its inherent non-convexity and the effects of noise in inter-node ranging measurements and anchor node position. We formulate a non-convex SNL problem as a multi-player non-convex potential game and investigate the existence and uniqueness of a Nash equilibrium (NE) in both the ideal setting without measurement noise and the practical setting with measurement noise. We first show that the NE exists and is unique in the noiseless case, and corresponds to the precise network localization. Then, we study the SNL for the case with errors affecting the anchor node position and the inter-node distance measurements. Specifically, we establish that in case these errors are sufficiently small, the NE exists and is unique. It is shown that the NE is an approximate solution to the SNL problem, and that the position errors can be quantified accordingly. Based on these findings, we apply the results to case studies involving only inter-node distance measurement errors and only anchor position information inaccuracies.


Global solution to sensor network localization: A non-convex potential game approach and its distributed implementation

arXiv.org Artificial Intelligence

Consider a sensor network consisting of both anchor and non-anchor nodes. We address the following sensor network localization (SNL) problem: given the physical locations of anchor nodes and relative measurements among all nodes, determine the locations of all non-anchor nodes. The solution to the SNL problem is challenging due to its inherent non-convexity. In this paper, the problem takes on the form of a multi-player non-convex potential game in which canonical duality theory is used to define a complementary dual potential function. After showing the Nash equilibrium (NE) correspondent to the SNL solution, we provide a necessary and sufficient condition for a stationary point to coincide with the NE. An algorithm is proposed to reach the NE and shown to have convergence rate $\mathcal{O}(1/\sqrt{k})$. With the aim of reducing the information exchange within a network, a distributed algorithm for NE seeking is implemented and its global convergence analysis is provided. Extensive simulations show the validity and effectiveness of the proposed approach to solve the SNL problem.


Anytime Replanning of Robot Coverage Paths for Partially Unknown Environments

arXiv.org Artificial Intelligence

In this paper, we propose a method to replan coverage paths for a robot operating in an environment with initially unknown static obstacles. Existing coverage approaches reduce coverage time by covering along the minimum number of coverage lines (straight-line paths). However, recomputing such paths online can be computationally expensive resulting in robot stoppages that increase coverage time. A naive alternative is greedy detour replanning, i.e., replanning with minimum deviation from the initial path, which is efficient to compute but may result in unnecessary detours. In this work, we propose an anytime coverage replanning approach named OARP-Replan that performs near-optimal replans to an interrupted coverage path within a given time budget. We do this by solving linear relaxations of mixed-integer linear programs (MILPs) to identify sections of the interrupted path that can be optimally replanned within the time budget. We validate our approach in simulation using maps of real-world environments and compare our approach against a greedy detour replanner and other state-of-the-art approaches.


Non-convex potential game approach to global solution in sensor network localization

arXiv.org Artificial Intelligence

Sensor network localization (SNL) problems require determining the physical coordinates of all sensors in a network. This process relies on the global coordinates of anchors and the available measurements between non-anchor and anchor nodes. Attributed to the intrinsic non-convexity, obtaining a globally optimal solution to SNL is challenging, as well as implementing corresponding algorithms. In this paper, we formulate a non-convex multi-player potential game for a generic SNL problem to investigate the identification condition of the global Nash equilibrium (NE) therein, where the global NE represents the global solution of SNL. We employ canonical duality theory to transform the non-convex game into a complementary dual problem. Then we develop a conjugation-based algorithm to compute the stationary points of the complementary dual problem. On this basis, we show an identification condition of the global NE: the stationary point of the proposed algorithm satisfies a duality relation. Finally, simulation results are provided to validate the effectiveness of the theoretical results.