Goto

Collaborating Authors

 Ferrante, Enzo


Fairness of Deep Ensembles: On the interplay between per-group task difficulty and under-representation

arXiv.org Artificial Intelligence

Ensembling is commonly regarded as an effective way to improve the general performance of models in machine learning, while also increasing the robustness of predictions. When it comes to algorithmic fairness, heterogeneous ensembles, composed of multiple model types, have been employed to mitigate biases in terms of demographic attributes such as sex, age or ethnicity. Moreover, recent work has shown how in multi-class problems even simple homogeneous ensembles may favor performance of the worst-performing target classes. While homogeneous ensembles are simpler to implement in practice, it is not yet clear whether their benefits translate to groups defined not in terms of their target class, but in terms of demographic or protected attributes, hence improving fairness. In this work we show how this simple and straightforward method is indeed able to mitigate disparities, particularly benefiting under-performing subgroups. Interestingly, this can be achieved without sacrificing overall performance, which is a common trade-off observed in bias mitigation strategies. Moreover, we analyzed the interplay between two factors which may result in biases: sub-group under-representation and the inherent difficulty of the task for each group. These results revealed that, contrary to popular assumptions, having balanced datasets may be suboptimal if the task difficulty varies between subgroups. Indeed, we found that a perfectly balanced dataset may hurt both the overall performance and the gap between groups. This highlights the importance of considering the interaction between multiple forces at play in fairness.


In the Picture: Medical Imaging Datasets, Artifacts, and their Living Review

arXiv.org Artificial Intelligence

Datasets play a critical role in medical imaging research, yet issues such as label quality, shortcuts, and metadata are often overlooked. This lack of attention may harm the generalizability of algorithms and, consequently, negatively impact patient outcomes. While existing medical imaging literature reviews mostly focus on machine learning (ML) methods, with only a few focusing on datasets for specific applications, these reviews remain static -- they are published once and not updated thereafter. This fails to account for emerging evidence, such as biases, shortcuts, and additional annotations that other researchers may contribute after the dataset is published. We refer to these newly discovered findings of datasets as research artifacts. To address this gap, we propose a living review that continuously tracks public datasets and their associated research artifacts across multiple medical imaging applications. Our approach includes a framework for the living review to monitor data documentation artifacts, and an SQL database to visualize the citation relationships between research artifact and dataset. Lastly, we discuss key considerations for creating medical imaging datasets, review best practices for data annotation, discuss the significance of shortcuts and demographic diversity, and emphasize the importance of managing datasets throughout their entire lifecycle. Our demo is publicly available at http://130.226.140.142.


Global MMLU: Understanding and Addressing Cultural and Linguistic Biases in Multilingual Evaluation

arXiv.org Artificial Intelligence

Cultural biases in multilingual datasets pose significant challenges for their effectiveness as global benchmarks. These biases stem not only from language but also from the cultural knowledge required to interpret questions, reducing the practical utility of translated datasets like MMLU. Furthermore, translation often introduces artifacts that can distort the meaning or clarity of questions in the target language. A common practice in multilingual evaluation is to rely on machine-translated evaluation sets, but simply translating a dataset is insufficient to address these challenges. In this work, we trace the impact of both of these issues on multilingual evaluations and ensuing model performances. Our large-scale evaluation of state-of-the-art open and proprietary models illustrates that progress on MMLU depends heavily on learning Western-centric concepts, with 28% of all questions requiring culturally sensitive knowledge. Moreover, for questions requiring geographic knowledge, an astounding 84.9% focus on either North American or European regions. Rankings of model evaluations change depending on whether they are evaluated on the full portion or the subset of questions annotated as culturally sensitive, showing the distortion to model rankings when blindly relying on translated MMLU. We release Global-MMLU, an improved MMLU with evaluation coverage across 42 languages -- with improved overall quality by engaging with compensated professional and community annotators to verify translation quality while also rigorously evaluating cultural biases present in the original dataset. This comprehensive Global-MMLU set also includes designated subsets labeled as culturally sensitive and culturally agnostic to allow for more holistic, complete evaluation.


SignAttention: On the Interpretability of Transformer Models for Sign Language Translation

arXiv.org Artificial Intelligence

This paper presents the first comprehensive interpretability analysis of a Transformer-based Sign Language Translation (SLT) model, focusing on the translation from video-based Greek Sign Language to glosses and text. Leveraging the Greek Sign Language Dataset, we examine the attention mechanisms within the model to understand how it processes and aligns visual input with sequential glosses. Our analysis reveals that the model pays attention to clusters of frames rather than individual ones, with a diagonal alignment pattern emerging between poses and glosses, which becomes less distinct as the number of glosses increases. We also explore the relative contributions of cross-attention and self-attention at each decoding step, finding that the model initially relies on video frames but shifts its focus to previously predicted tokens as the translation progresses. This work contributes to a deeper understanding of SLT models, paving the way for the development of more transparent and reliable translation systems essential for real-world applications.


Uncertainty in latent representations of variational autoencoders optimized for visual tasks

arXiv.org Artificial Intelligence

Deep learning methods are increasingly becoming instrumental as modeling tools in computational neuroscience, employing optimality principles to build bridges between neural responses and perception or behavior. Developing models that adequately represent uncertainty is however challenging for deep learning methods, which often suffer from calibration problems. This constitutes a difficulty in particular when modeling cortical circuits in terms of Bayesian inference, beyond single point estimates such as the posterior mean or the maximum a posteriori. In this work we systematically studied uncertainty representations in latent representations of variational auto-encoders (VAEs), both in a perceptual task from natural images and in two other canonical tasks of computer vision, finding a poor alignment between uncertainty and informativeness or ambiguities in the images. We next showed how a novel approach which we call explaining-away variational auto-encoders (EA-VAEs), fixes these issues, producing meaningful reports of uncertainty in a variety of scenarios, including interpolation, image corruption, and even out-of-distribution detection. We show EA-VAEs may prove useful both as models of perception in computational neuroscience and as inference tools in computer vision.


Predicting risk of cardiovascular disease using retinal OCT imaging

arXiv.org Artificial Intelligence

Purpose: we investigated the potential of optical coherence tomography (OCT) as an additional imaging technique to predict future cardiovascular disease (CVD). Design: Retrospective cohort study Participants: We employed retinal optical coherence tomography (OCT) imaging data obtained from the UK Biobank. Data for 630 patients who suffered acute myocardial infarction (MI) or stroke within a 5-year interval after image acquisition, together with an equal number of participants without CVD (control group), were used to train our model (1260 subjects in total). Methods: We utilised a self-supervised deep learning approach based on Variational Autoencoders (VAE) to learn low-dimensional (latent) representations of high-dimensional 3D OCT images and to capture distinct characteristics of different retinal layers within the OCT image. A Random Forest (RF) classifier was subsequently trained using the learned latent features and participant demographic and clinical data, to differentiate between patients at risk of CVD events (MI or stroke) and non-CVD cases. Main Outcome Measures: Our predictive model, trained on multimodal data, was assessed based on its ability to correctly identify individuals likely to suffer from a CVD event (MI or stroke), within a 5-year interval after image acquisition. Results: Our self-supervised VAE feature selection and multimodal Random Forest classifier differentiate between patients at risk of future CVD events and the control group with an AUC of 0.75, outperforming the clinically established QRISK3 score (AUC = 0.597). The choroidal layer visible in OCT images was identified as an important predictor of future CVD events using a novel approach to model explanability. Conclusions: Retinal OCT imaging provides a cost-effective and non-invasive alternative to predict the risk of cardiovascular disease and is readily accessible in optometry practices and hospitals.


Source Matters: Source Dataset Impact on Model Robustness in Medical Imaging

arXiv.org Artificial Intelligence

Transfer learning has become an essential part of medical imaging classification algorithms, often leveraging ImageNet weights. However, the domain shift from natural to medical images has prompted alternatives such as RadImageNet, often demonstrating comparable classification performance. However, it remains unclear whether the performance gains from transfer learning stem from improved generalization or shortcut learning. To address this, we investigate potential confounders -- whether synthetic or sampled from the data -- across two publicly available chest X-ray and CT datasets. We show that ImageNet and RadImageNet achieve comparable classification performance, yet ImageNet is much more prone to overfitting to confounders. We recommend that researchers using ImageNet-pretrained models reexamine their model robustness by conducting similar experiments. Our code and experiments are available at https://github.com/DovileDo/source-matters.


Supervision by Denoising for Medical Image Segmentation

arXiv.org Artificial Intelligence

Abstract--Learning-based image reconstruction models, such as those based on the U-Net, require a large set of labeled images if good generalization is to be guaranteed. In some imaging domains, however, labeled data with pixel-or voxel-level label accuracy are scarce due to the cost of acquiring them. This problem is exacerbated further in domains like medical imaging, where there is no single ground truth label, resulting in large amounts of repeat variability in the labels. Therefore, training reconstruction networks to generalize better by learning from both labeled and unlabeled examples (called semi-supervised learning) is problem of practical and theoretical interest. However, traditional semi-supervised learning methods for image reconstruction often necessitate handcrafting a differentiable regularizer specific to some given imaging problem, which can be extremely time-consuming. In this work, we propose "supervision by denoising" (SUD), a framework to supervise reconstruction models using their own denoised output as labels. SUD unifies stochastic averaging and spatial denoising techniques under a spatio-temporal denoising framework and alternates denoising and model weight update steps in an optimization framework for semi-supervision. As example applications, we apply SUD to two problems from biomedical imaging--anatomical brain reconstruction (3D) and cortical parcellation (2D)--to demonstrate a significant improvement in reconstruction over supervised-only and ensembling baselines. While reconstruction models such as those based on the reconstruction network has proved extremely useful for U-Net [5] typically outperform handcrafted models in many imposing topological or spatial priors on the reconstruction imaging problems, they can involve millions of parameters [18], [19] and semi-supervised learning (SSL). SSL methods and, as a result, have a tendency to overfit training data and based on regularization suffer neither from limited diversity generalize poorly to previously unseen images at test time-- of augmented data nor domain gaps resulting from training a problem also exacerbated by distribution shift [6].


Are demographically invariant models and representations in medical imaging fair?

arXiv.org Artificial Intelligence

Medical imaging models have been shown to encode information about patient demographics such as age, race, and sex in their latent representation, raising concerns about their potential for discrimination. Here, we ask whether requiring models not to encode demographic attributes is desirable. We point out that marginal and class-conditional representation invariance imply the standard group fairness notions of demographic parity and equalized odds, respectively, while additionally requiring risk distribution matching, thus potentially equalizing away important group differences. Enforcing the traditional fairness notions directly instead does not entail these strong constraints. Moreover, representationally invariant models may still take demographic attributes into account for deriving predictions. The latter can be prevented using counterfactual notions of (individual) fairness or invariance. We caution, however, that properly defining medical image counterfactuals with respect to demographic attributes is highly challenging. Finally, we posit that encoding demographic attributes may even be advantageous if it enables learning a task-specific encoding of demographic features that does not rely on social constructs such as 'race' and 'gender.' We conclude that demographically invariant representations are neither necessary nor sufficient for fairness in medical imaging. Models may need to encode demographic attributes, lending further urgency to calls for comprehensive model fairness assessments in terms of predictive performance across diverse patient groups.


FUTURE-AI: International consensus guideline for trustworthy and deployable artificial intelligence in healthcare

arXiv.org Artificial Intelligence

Despite major advances in artificial intelligence (AI) for medicine and healthcare, the deployment and adoption of AI technologies remain limited in real-world clinical practice. In recent years, concerns have been raised about the technical, clinical, ethical and legal risks associated with medical AI. To increase real world adoption, it is essential that medical AI tools are trusted and accepted by patients, clinicians, health organisations and authorities. This work describes the FUTURE-AI guideline as the first international consensus framework for guiding the development and deployment of trustworthy AI tools in healthcare. The FUTURE-AI consortium was founded in 2021 and currently comprises 118 inter-disciplinary experts from 51 countries representing all continents, including AI scientists, clinicians, ethicists, and social scientists. Over a two-year period, the consortium defined guiding principles and best practices for trustworthy AI through an iterative process comprising an in-depth literature review, a modified Delphi survey, and online consensus meetings. The FUTURE-AI framework was established based on 6 guiding principles for trustworthy AI in healthcare, i.e. Fairness, Universality, Traceability, Usability, Robustness and Explainability. Through consensus, a set of 28 best practices were defined, addressing technical, clinical, legal and socio-ethical dimensions. The recommendations cover the entire lifecycle of medical AI, from design, development and validation to regulation, deployment, and monitoring. FUTURE-AI is a risk-informed, assumption-free guideline which provides a structured approach for constructing medical AI tools that will be trusted, deployed and adopted in real-world practice. Researchers are encouraged to take the recommendations into account in proof-of-concept stages to facilitate future translation towards clinical practice of medical AI.