Goto

Collaborating Authors

 Fernández, Alberto


Overlap Number of Balls Model-Agnostic CounterFactuals (ONB-MACF): A Data-Morphology-based Counterfactual Generation Method for Trustworthy Artificial Intelligence

arXiv.org Artificial Intelligence

Explainable Artificial Intelligence (XAI) is a pivotal research domain aimed at understanding the operational mechanisms of AI systems, particularly those considered ``black boxes'' due to their complex, opaque nature. XAI seeks to make these AI systems more understandable and trustworthy, providing insight into their decision-making processes. By producing clear and comprehensible explanations, XAI enables users, practitioners, and stakeholders to trust a model's decisions. This work analyses the value of data morphology strategies in generating counterfactual explanations. It introduces the Overlap Number of Balls Model-Agnostic CounterFactuals (ONB-MACF) method, a model-agnostic counterfactual generator that leverages data morphology to estimate a model's decision boundaries. The ONB-MACF method constructs hyperspheres in the data space whose covered points share a class, mapping the decision boundary. Counterfactuals are then generated by incrementally adjusting an instance's attributes towards the nearest alternate-class hypersphere, crossing the decision boundary with minimal modifications. By design, the ONB-MACF method generates feasible and sparse counterfactuals that follow the data distribution. Our comprehensive benchmark from a double perspective (quantitative and qualitative) shows that the ONB-MACF method outperforms existing state-of-the-art counterfactual generation methods across multiple quality metrics on diverse tabular datasets. This supports our hypothesis, showcasing the potential of data-morphology-based explainability strategies for trustworthy AI.


Bike3S: A Tool for Bike Sharing Systems Simulation

arXiv.org Artificial Intelligence

Vehicle sharing systems are becoming increasingly popular. The effectiveness of such systems depends, among other factors, on different strategic and operational management decisions and policies, like the dimension of the fleet or the distribution of vehicles. It is of foremost importance to be able to anticipate and evaluate the potential effects of such strategies before they can be successfully deployed. In this paper we present Bike3S, a simulator for a station-based bike sharing system. The simulator performs semi-realistic simulations of the operation of a bike sharing system and allows for evaluating and testing different management decisions and strategies. In particular, the simulator has been designed to test different station capacities, station distributions, and balancing strategies. The simulator carries out microscopic agent-based simulations, where users of different types can be defined that act according to their individual goals and objectives which influences the overall dynamics of the whole system.


Streamlining Advanced Taxi Assignment Strategies based on Legal Analysis

arXiv.org Artificial Intelligence

In recent years many novel applications have appeared that promote the provision of services and activities in a collaborative manner. The key idea behind such systems is to take advantage of idle or underused capacities of existing resources, in order to provide improved services that assist people in their daily tasks, with additional functionality, enhanced efficiency, and/or reduced cost. Particularly in the domain of urban transportation, many researchers have put forward novel ideas, which are then implemented and evaluated through prototypes that usually draw upon AI methods and tools. However, such proposals also bring up multiple non-technical issues that need to be identified and addressed adequately if such systems are ever meant to be applied to the real world. While, in practice, legal and ethical aspects related to such AI-based systems are seldomly considered in the beginning of the research and development process, we argue that they not only restrict design decisions, but can also help guiding them. In this manuscript, we set out from a prototype of a taxi coordination service that mediates between individual (and autonomous) taxis and potential customers. After representing key aspects of its operation in a semi-structured manner, we analyse its viability from the viewpoint of current legal restrictions and constraints, so as to identify additional non-functional requirements as well as options to address them. Then, we go one step ahead, and actually modify the existing prototype to incorporate the previously identified recommendations. Performing experiments with this improved system helps us identify the most adequate option among several legally admissible alternatives.


Towards a prioritised use of transportation infrastructures: the case of vehicle-specific dynamic access restrictions to city centres

arXiv.org Artificial Intelligence

One of the main problems that local authorities of large cities have to face is the regulation of urban mobility. They need to provide the means to allow for the efficient movement of people and distribution of goods. However, the provisioning of transportation services needs to take into account general global objectives, like reducing emissions and having more healthy living environments, which may not always be aligned with individual interests. Urban mobility is usually provided through a transport infrastructure that includes all the elements that support mobility. On many occasions, the capacity of the elements of this infrastructure is lower than the actual demand and thus different transportation activities compete for their use. In this paper, we argue that scarce transport infrastructure elements should be assigned dynamically and in a prioritised manner to transport activities that have a higher utility from the point of view of society; for example, activities that produce less pollution and provide more value to society. In this paper, we define a general model for prioritizing the use of a particular type of transportation infrastructure element called time-unlimited elements, whose usage time is unknown a priori, and illustrate its dynamics through two use cases: vehicle-specific dynamic access restriction in city centres (i) based on the usage levels of available parking spaces and (ii) to assure sustained admissible air quality levels in the city centre. We carry out several experiments using the SUMO traffic simulation tool to evaluate our proposal.


Smart Recommendations for Renting Bikes in Bike Sharing Systems

arXiv.org Artificial Intelligence

Vehicle-sharing systems -- such as bike-, car-, or motorcycle-sharing systems -- have become increasingly popular in big cities in recent years. On the one hand, they provide a cheaper and environmentally friendlier means of transportation than private cars, and on the other hand, they satisfy the individual mobility demands of citizens better than traditional public transport systems. One of their advantages in this regard is their availability, e.g., the possibility of taking (or leaving) a vehicle almost anywhere in a city. This availability obviously depends on different strategic and operational management decisions and policies, such as the dimension of the fleet or the (re)distribution of vehicles. Agglutination problems -- where, due to usage patterns, available vehicles are concentrated in certain areas, whereas no vehicles are available in others -- are quite common in such systems, and need to be dealt with. Research has been dedicated to this problem, specifying different techniques to reduce imbalanced situations. In this paper, we present and compare strategies for recommending stations to users who wish to rent or return bikes in station-based bike-sharing systems. Our first contribution is a novel recommendation strategy based on queuing theory that recommends stations based on their utility to the user in terms of lower distance and higher probability of finding a bike or slot. Then, we go one step further, defining a strategy that recommends stations by combining the utility of a particular user with the utility of the global system, measured in terms of the improvement in the distribution of bikes and slots with respect to the expected future demand, with the aim of implicitly avoiding or alleviating balancing problems. We present several experiments to evaluate our proposal with real data from the bike sharing system BiciMAD in Madrid.


Agreement Technologies for Coordination in Smart Cities

arXiv.org Artificial Intelligence

From email, over social networks, to virtual worlds, the way people work and enjoy their free time is changing dramatically. The resulting networks are usually large in scale, involving huge numbers of interactions, and are open for the interacting entities to join or leave at will. People are often supported by software components of different complexity to which some of the corresponding tasks can be delegated. In practice, such systems cannot be built and managed based on rigid, centralised client-server architectures, but call for more flexible and decentralised means of interaction. The field of Agreement Technologies (AT) [1] envisions next-generation open distributed systems, where interactions between software components are based on the concept of agreement, and which enact two key mechanisms: a means to specify the "space" of agreements that the agents can possibly reach, and an interaction model by means of which agreements can be effectively reached. Autonomy, interaction, mobility and openness are key characteristics that are tackled from a theoretical and practical perspective. Coordination in Distributed Systems is often seen as governing the interaction among distributed processes, with the aim of "gluing together" their behaviour, so that the resulting ensemble shows desired characteristics or functionalities [2]. This notion has also been applied to Distributed Systems made up of software agents. Initially, the main purpose of such multiagent systems was to efficiently perform problem-solving in a distributed manner: both the agents and their rules of interaction were designed together, often in a top-down manner and applying a divide-and-Appl.


Taxi dispatching strategies with compensations

arXiv.org Artificial Intelligence

Urban mobility efficiency is of utmost importance in big cities. Taxi vehicles are key elements in daily traffic activity. The advance of ICT and geo-positioning systems has given rise to new opportunities for improving the efficiency of taxi fleets in terms of waiting times of passengers, cost and time for drivers, traffic density, CO2 emissions, etc., by using more informed, intelligent dispatching. Still, the explicit spatial and temporal components, as well as the scale and, in particular, the dynamicity of the problem of pairing passengers and taxis in big towns, render traditional approaches for solving standard assignment problem useless for this purpose, and call for intelligent approximation strategies based on domain-specific heuristics. Furthermore, taxi drivers are often autonomous actors and may not agree to participate in assignments that, though globally efficient, may not be sufficently beneficial for them individually. This paper presents a new heuristic algorithm for taxi assignment to customers that considers taxi reassignments if this may lead to globally better solutions. In addition, as such new assignments may reduce the expected revenues of individual drivers, we propose an economic compensation scheme to make individually rational drivers agree to proposed modifications in their assigned clients. We carried out a set of experiments, where several commonly used assignment strategies are compared to three different instantiations of our heuristic algorithm. The results indicate that our proposal has the potential to reduce customer waiting times in fleets of autonomous taxis, while being also beneficial from an economic point of view.


Legal and ethical implications of applications based on agreement technologies: the case of auction-based road intersections

arXiv.org Artificial Intelligence

Agreement Technologies refer to a novel paradigm for the construction of distributed intelligent systems, where autonomous software agents negotiate to reach agreements on behalf of their human users. Smart Cities are a key application domain for Agreement Technologies. While several proofs of concept and prototypes exist, such systems are still far from ready for being deployed in the real-world. In this paper we focus on a novel method for managing elements of smart road infrastructures of the future, namely the case of auction-based road intersections. We show that, even though the key technological elements for such methods are already available, there are multiple non-technical issues that need to be tackled before they can be applied in practice. For this purpose, we analyse legal and ethical implications of auction-based road intersections in the context of international regulations and from the standpoint of the Spanish legislation. From this exercise, we extract a set of required modifications, of both technical and legal nature, which need to be addressed so as to pave the way for the potential real-world deployment of such systems in a future that may not be too far away.


Spillover Algorithm: A Decentralized Coordination Approach for Multi-Robot Production Planning in Open Shared Factories

arXiv.org Artificial Intelligence

Open and shared manufacturing factories typically dispose of a limited number of robots that should be properly allocated to tasks in time and space for an effective and efficient system performance. In particular, we deal with the dynamic capacitated production planning problem with sequence independent setup costs where quantities of products to manufacture and location of robots need to be determined at consecutive periods within a given time horizon and products can be anticipated or backordered related to the demand period. We consider a decentralized multi-agent variant of this problem in an open factory setting with multiple owners of robots as well as different owners of the items to be produced, both considered self-interested and individually rational. Existing solution approaches to the classic constrained lot-sizing problem are centralized exact methods that require sharing of global knowledge of all the participants' private and sensitive information and are not applicable in the described multi-agent context. Therefore, we propose a computationally efficient decentralized approach based on the spillover effect that solves this NP-hard problem by distributing decisions in an intrinsically decentralized multi-agent system environment while protecting private and sensitive information. To the best of our knowledge, this is the first decentralized algorithm for the solution of the studied problem in intrinsically decentralized environments where production resources and/or products are owned by multiple stakeholders with possibly conflicting objectives. To show its efficiency, the performance of the Spillover Algorithm is benchmarked against state-of-the-art commercial solver CPLEX 12.8.


Revisiting Data Complexity Metrics Based on Morphology for Overlap and Imbalance: Snapshot, New Overlap Number of Balls Metrics and Singular Problems Prospect

arXiv.org Machine Learning

Data Science and Machine Learning have become fundamental assets for companies and research institutions alike. As one of its fields, supervised classification allows for class prediction of new samples, learning from given training data. However, some properties can cause datasets to be problematic to classify. In order to evaluate a dataset a priori, data complexity metrics have been used extensively. They provide information regarding different intrinsic characteristics of the data, which serve to evaluate classifier compatibility and a course of action that improves performance. However, most complexity metrics focus on just one characteristic of the data, which can be insufficient to properly evaluate the dataset towards the classifiers' performance. In fact, class overlap, a very detrimental feature for the classification process (especially when imbalance among class labels is also present) is hard to assess. This research work focuses on revisiting complexity metrics based on data morphology. In accordance to their nature, the premise is that they provide both good estimates for class overlap, and great correlations with the classification performance. For that purpose, a novel family of metrics have been developed. Being based on ball coverage by classes, they are named after Overlap Number of Balls. Finally, some prospects for the adaptation of the former family of metrics to singular (more complex) problems are discussed.