Goto

Collaborating Authors

 Ferbach, Damien


Self-Consuming Generative Models with Curated Data Provably Optimize Human Preferences

arXiv.org Machine Learning

The rapid progress in generative models has resulted in impressive leaps in generation quality, blurring the lines between synthetic and real data. Web-scale datasets are now prone to the inevitable contamination by synthetic data, directly impacting the training of future generated models. Already, some theoretical results on self-consuming generative models (a.k.a., iterative retraining) have emerged in the literature, showcasing that either model collapse or stability could be possible depending on the fraction of generated data used at each retraining step. However, in practice, synthetic data is often subject to human feedback and curated by users before being used and uploaded online. For instance, many interfaces of popular text-to-image generative models, such as Stable Diffusion or Midjourney, produce several variations of an image for a given query which can eventually be curated by the users. In this paper, we theoretically study the impact of data curation on iterated retraining of generative models and show that it can be seen as an \emph{implicit preference optimization mechanism}. However, unlike standard preference optimization, the generative model does not have access to the reward function or negative samples needed for pairwise comparisons. Moreover, our study doesn't require access to the density function, only to samples. We prove that, if the data is curated according to a reward model, then the expected reward of the iterative retraining procedure is maximized. We further provide theoretical results on the stability of the retraining loop when using a positive fraction of real data at each step. Finally, we conduct illustrative experiments on both synthetic datasets and on CIFAR10 showing that such a procedure amplifies biases of the reward model.


Proving Linear Mode Connectivity of Neural Networks via Optimal Transport

arXiv.org Artificial Intelligence

The energy landscape of high-dimensional non-convex optimization problems is crucial to understanding the effectiveness of modern deep neural network architectures. Recent works have experimentally shown that two different solutions found after two runs of a stochastic training are often connected by very simple continuous paths (e.g., linear) modulo a permutation of the weights. In this paper, we provide a framework theoretically explaining this empirical observation. Based on convergence rates in Wasserstein distance of empirical measures, we show that, with high probability, two wide enough two-layer neural networks trained with stochastic gradient descent are linearly connected. Additionally, we express upper and lower bounds on the width of each layer of two deep neural networks with independent neuron weights to be linearly connected. Finally, we empirically demonstrate the validity of our approach by showing how the dimension of the support of the weight distribution of neurons, which dictates Wasserstein convergence rates is correlated with linear mode connectivity.


A General Framework For Proving The Equivariant Strong Lottery Ticket Hypothesis

arXiv.org Artificial Intelligence

The Strong Lottery Ticket Hypothesis (SLTH) stipulates the existence of a subnetwork within a sufficiently overparameterized (dense) neural network that -- when initialized randomly and without any training -- achieves the accuracy of a fully trained target network. Recent works by Da Cunha et. al 2022; Burkholz 2022 demonstrate that the SLTH can be extended to translation equivariant networks -- i.e. CNNs -- with the same level of overparametrization as needed for the SLTs in dense networks. However, modern neural networks are capable of incorporating more than just translation symmetry, and developing general equivariant architectures such as rotation and permutation has been a powerful design principle. In this paper, we generalize the SLTH to functions that preserve the action of the group $G$ -- i.e. $G$-equivariant network -- and prove, with high probability, that one can approximate any $G$-equivariant network of fixed width and depth by pruning a randomly initialized overparametrized $G$-equivariant network to a $G$-equivariant subnetwork. We further prove that our prescribed overparametrization scheme is optimal and provides a lower bound on the number of effective parameters as a function of the error tolerance. We develop our theory for a large range of groups, including subgroups of the Euclidean $\text{E}(2)$ and Symmetric group $G \leq \mathcal{S}_n$ -- allowing us to find SLTs for MLPs, CNNs, $\text{E}(2)$-steerable CNNs, and permutation equivariant networks as specific instantiations of our unified framework. Empirically, we verify our theory by pruning overparametrized $\text{E}(2)$-steerable CNNs, $k$-order GNNs, and message passing GNNs to match the performance of trained target networks.