Goto

Collaborating Authors

 Feng, Yansong


MC$^2$: Towards Transparent and Culturally-Aware NLP for Minority Languages in China

arXiv.org Artificial Intelligence

Current large language models demonstrate deficiencies in understanding low-resource languages, particularly the minority languages in China. This limitation stems from the scarcity of available pre-training data. To address this accessibility challenge, we present MC$^2$, a Multilingual Corpus of Minority Languages in China, which is the largest open-source corpus of its kind so far. MC$^2$ includes four underrepresented languages: Tibetan, Uyghur, Kazakh, and Mongolian. Notably, we focus on the less common writing systems of Kazakh and Mongolian, i.e., Kazakh Arabic script and traditional Mongolian script, respectively, which have been long neglected in previous corpus construction efforts. Recognizing the prevalence of language contamination within existing corpora, we adopt a quality-centric solution for collecting MC$^2$, prioritizing accuracy while enhancing diversity. Furthermore, we underscore the importance of attending to the multiplicity of writing systems, which is closely related to the cultural awareness of the resulting models. The MC$^2$ corpus and related models are made public to the community.


Are LLMs Capable of Data-based Statistical and Causal Reasoning? Benchmarking Advanced Quantitative Reasoning with Data

arXiv.org Artificial Intelligence

Quantitative reasoning is a critical skill to analyze data, yet the assessment of such ability remains limited. To address this gap, we introduce the Quantitative Reasoning with Data (QRData) benchmark, aiming to evaluate Large Language Models' capability in statistical and causal reasoning with real-world data. The benchmark comprises a carefully constructed dataset of 411 questions accompanied by data sheets from textbooks, online learning materials, and academic papers. To compare models' quantitative reasoning abilities on data and text, we enrich the benchmark with an auxiliary set of 290 text-only questions, namely QRText. We evaluate natural language reasoning, program-based reasoning, and agent reasoning methods including Chain-of-Thought, Program-of-Thoughts, ReAct, and code interpreter assistants on diverse models. The strongest model GPT-4 achieves an accuracy of 58%, which has much room for improvement. Among open-source models, Deepseek-coder-instruct, a code LLM pretrained on 2T tokens, gets the highest accuracy of 37%. Analysis reveals that models encounter difficulties in data analysis and causal reasoning, and struggle in using causal knowledge and provided data simultaneously. Code and data are in https://github.com/xxxiaol/QRData.


Can Perplexity Reflect Large Language Model's Ability in Long Text Understanding?

arXiv.org Artificial Intelligence

Recent studies have shown that Large Language Models (LLMs) have the potential to process extremely long text. Many works only evaluate LLMs' long-text processing ability on the language modeling task, with perplexity (PPL) as the evaluation metric. However, in our study, we find that there is no correlation between PPL and LLMs' long-text understanding ability. Besides, PPL may only reflect the model's ability to model local information instead of catching long-range dependency. Therefore, only using PPL to prove the model could process long text is inappropriate. The local focus feature of PPL could also explain some existing phenomena, such as the great extrapolation ability of the position method ALiBi. When evaluating a model's ability in long text, we might pay more attention to PPL's limitation and avoid overly relying on it.


Motion Generation from Fine-grained Textual Descriptions

arXiv.org Artificial Intelligence

The task of text2motion is to generate human motion sequences from given textual descriptions, where the model explores diverse mappings from natural language instructions to human body movements. While most existing works are confined to coarse-grained motion descriptions, e.g., "A man squats.", fine-grained descriptions specifying movements of relevant body parts are barely explored. Models trained with coarse-grained texts may not be able to learn mappings from fine-grained motion-related words to motion primitives, resulting in the failure to generate motions from unseen descriptions. In this paper, we build a large-scale language-motion dataset specializing in fine-grained textual descriptions, FineHumanML3D, by feeding GPT-3.5-turbo with step-by-step instructions with pseudo-code compulsory checks. Accordingly, we design a new text2motion model, FineMotionDiffuse, making full use of fine-grained textual information. Our quantitative evaluation shows that FineMotionDiffuse trained on FineHumanML3D improves FID by a large margin of 0.38, compared with competitive baselines. According to the qualitative evaluation and case study, our model outperforms MotionDiffuse in generating spatially or chronologically composite motions, by learning the implicit mappings from fine-grained descriptions to the corresponding basic motions. We release our data at https://github.com/KunhangL/finemotiondiffuse.


Probing Multimodal Large Language Models for Global and Local Semantic Representations

arXiv.org Artificial Intelligence

The advancement of Multimodal Large Language Models (MLLMs) has greatly accelerated the development of applications in understanding integrated texts and images. Recent works leverage image-caption datasets to train MLLMs, achieving state-of-the-art performance on image-to-text tasks. However, there are few studies exploring which layers of MLLMs make the most effort to the global image information, which plays vital roles in multimodal comprehension and generation. In this study, we find that the intermediate layers of models can encode more global semantic information, whose representation vectors perform better on visual-language entailment tasks, rather than the topmost layers. We further probe models regarding local semantic representations through object recognition tasks. We find that the topmost layers may excessively focus on local information, leading to a diminished ability to encode global information.


Harder Tasks Need More Experts: Dynamic Routing in MoE Models

arXiv.org Artificial Intelligence

In this paper, we introduce a novel dynamic expert selection framework for Mixture of Experts (MoE) models, aiming to enhance computational efficiency and model performance by adjusting the number of activated experts based on input difficulty. Unlike traditional MoE approaches that rely on fixed Top-K routing, which activates a predetermined number of experts regardless of the input's complexity, our method dynamically selects experts based on the confidence level in expert selection for each input. This allows for a more efficient utilization of computational resources, activating more experts for complex tasks requiring advanced reasoning and fewer for simpler tasks. Through extensive evaluations, our dynamic routing method demonstrates substantial improvements over conventional Top-2 routing across various benchmarks, achieving an average improvement of 0.7% with less than 90% activated parameters. Further analysis shows our model dispatches more experts to tasks requiring complex reasoning skills, like BBH, confirming its ability to dynamically allocate computational resources in alignment with the input's complexity. Our findings also highlight a variation in the number of experts needed across different layers of the transformer model, offering insights into the potential for designing heterogeneous MoE frameworks. The code and models are available at https://github.com/ZhenweiAn/Dynamic_MoE.


Chain-of-Discussion: A Multi-Model Framework for Complex Evidence-Based Question Answering

arXiv.org Artificial Intelligence

Open-ended question answering requires models to find appropriate evidence to form well-reasoned, comprehensive and helpful answers. In practical applications, models also need to engage in extended discussions on potential scenarios closely relevant to the question. With augmentation of retrieval module, open-source Large Language Models (LLMs) can produce coherent answers often with different focuses, but are still sub-optimal in terms of reliable evidence selection and in-depth question analysis. In this paper, we propose a novel Chain-of-Discussion framework to leverage the synergy among multiple open-source LLMs aiming to provide \textbf{more correct} and \textbf{more comprehensive} answers for open-ended QA, although they are not strong enough individually. Our experiments show that discussions among multiple LLMs play a vital role in enhancing the quality of answers. We release our data and code at \url{https://github.com/kobayashikanna01/Chain-of-Discussion}.


CASA: Causality-driven Argument Sufficiency Assessment

arXiv.org Artificial Intelligence

The argument sufficiency assessment task aims to determine if the premises of a given argument support its conclusion. To tackle this task, existing works often train a classifier on data annotated by humans. However, annotating data is laborious, and annotations are often inconsistent due to subjective criteria. Motivated by the probability of sufficiency (PS) definition in the causal literature, we propose CASA, a zero-shot causality-driven argument sufficiency assessment framework. PS measures how likely introducing the premise event would lead to the conclusion, when both the premise and conclusion events are absent. To estimate this probability, we propose to use large language models (LLMs) to generate contexts that are inconsistent with the premise and conclusion, and revise them by injecting the premise event. Experiments on two logical fallacy detection datasets demonstrate that CASA accurately identifies insufficient arguments. We further deploy CASA in a writing assistance application, and find that suggestions generated by CASA enhance the sufficiency of student-written arguments. Code and data are available at https://github.com/xxxiaol/CASA.


Lawyer LLaMA Technical Report

arXiv.org Artificial Intelligence

Large Language Models (LLMs), like LLaMA, have exhibited remarkable performance across various tasks. Nevertheless, when deployed to specific domains such as law or medicine, the models still confront the challenge of a deficiency in domain-specific knowledge and an inadequate capability to leverage that knowledge to resolve domain-related problems. In this paper, we propose a new framework to adapt LLMs to specific domains and build Lawyer LLaMA, a legal domain LLM, based on this framework. Specifically, we inject domain knowledge during the continual training stage and teach the model to learn professional skills using properly designed supervised fine-tuning tasks. Moreover, to alleviate the hallucination problem during the model's generation, we add a retrieval module and extract relevant legal articles before the model answers any queries. When learning domain-specific skills, we find that experts' experience is much more useful than experiences distilled from ChatGPT, where hundreds of expert-written data outperform tens of thousands of ChatGPT-generated ones. We will release our model and data.


From the One, Judge of the Whole: Typed Entailment Graph Construction with Predicate Generation

arXiv.org Artificial Intelligence

Entailment Graphs (EGs) have been constructed based on extracted corpora as a strong and explainable form to indicate context-independent entailment relations in natural languages. However, EGs built by previous methods often suffer from the severe sparsity issues, due to limited corpora available and the long-tail phenomenon of predicate distributions. In this paper, we propose a multi-stage method, Typed Predicate-Entailment Graph Generator (TP-EGG), to tackle this problem. Given several seed predicates, TP-EGG builds the graphs by generating new predicates and detecting entailment relations among them. The generative nature of TP-EGG helps us leverage the recent advances from large pretrained language models (PLMs), while avoiding the reliance on carefully prepared corpora. Experiments on benchmark datasets show that TP-EGG can generate high-quality and scale-controllable entailment graphs, achieving significant in-domain improvement over state-of-the-art EGs and boosting the performance of down-stream inference tasks.