Feng, Weiqi
VeTraSS: Vehicle Trajectory Similarity Search Through Graph Modeling and Representation Learning
Cheng, Ming, Zhang, Bowen, Wang, Ziyu, Zhou, Ziyi, Feng, Weiqi, Lyu, Yi, Diao, Xingjian
Trajectory similarity search plays an essential role in autonomous driving, as it enables vehicles to analyze the information and characteristics of different trajectories to make informed decisions and navigate safely in dynamic environments. Existing work on the trajectory similarity search task primarily utilizes sequence-processing algorithms or Recurrent Neural Networks (RNNs), which suffer from the inevitable issues of complicated architecture and heavy training costs. Considering the intricate connections between trajectories, using Graph Neural Networks (GNNs) for data modeling is feasible. However, most methods directly use existing mathematical graph structures as the input instead of constructing specific graphs from certain vehicle trajectory data. This ignores such data's unique and dynamic characteristics. To bridge such a research gap, we propose VeTraSS -- an end-to-end pipeline for Vehicle Trajectory Similarity Search. Specifically, VeTraSS models the original trajectory data into multi-scale graphs, and generates comprehensive embeddings through a novel multi-layer attention-based GNN. The learned embeddings can be used for searching similar vehicle trajectories. Extensive experiments on the Porto and Geolife datasets demonstrate the effectiveness of VeTraSS, where our model outperforms existing work and reaches the state-of-the-art. This demonstrates the potential of VeTraSS for trajectory analysis and safe navigation in self-driving vehicles in the real world.
CATP: Cross-Attention Token Pruning for Accuracy Preserved Multimodal Model Inference
Liao, Ruqi, Zhao, Chuqing, Li, Jin, Feng, Weiqi
In response to the rising interest in large multimodal models, we introduce Cross-Attention Token Pruning (CATP), a precision-focused token pruning method. Our approach leverages cross-attention layers in multimodal models, exemplified by BLIP-2, to extract valuable information for token importance determination. CATP employs a refined voting strategy across model heads and layers. In evaluations, CATP achieves up to 12.1X higher accuracy compared to existing token pruning methods, addressing the trade-off between computational efficiency and model precision.
Interpretable Math Word Problem Solution Generation Via Step-by-step Planning
Zhang, Mengxue, Wang, Zichao, Yang, Zhichao, Feng, Weiqi, Lan, Andrew
Solutions to math word problems (MWPs) with step-by-step explanations are valuable, especially in education, to help students better comprehend problem-solving strategies. Most existing approaches only focus on obtaining the final correct answer. A few recent approaches leverage intermediate solution steps to improve final answer correctness but often cannot generate coherent steps with a clear solution strategy. Contrary to existing work, we focus on improving the correctness and coherence of the intermediate solutions steps. We propose a step-by-step planning approach for intermediate solution generation, which strategically plans the generation of the next solution step based on the MWP and the previous solution steps. Our approach first plans the next step by predicting the necessary math operation needed to proceed, given history steps, then generates the next step, token-by-token, by prompting a language model with the predicted math operation. Experiments on the GSM8K dataset demonstrate that our approach improves the accuracy and interpretability of the solution on both automatic metrics and human evaluation.