Goto

Collaborating Authors

 Feng, Ruoxuan


AnyTouch: Learning Unified Static-Dynamic Representation across Multiple Visuo-tactile Sensors

arXiv.org Artificial Intelligence

Visuo-tactile sensors aim to emulate human tactile perception, enabling robots to precisely understand and manipulate objects. Over time, numerous meticulously designed visuo-tactile sensors have been integrated into robotic systems, aiding in completing various tasks. However, the distinct data characteristics of these low-standardized visuo-tactile sensors hinder the establishment of a powerful tactile perception system. We consider that the key to addressing this issue lies in learning unified multi-sensor representations, thereby integrating the sensors and promoting tactile knowledge transfer between them. To achieve unified representation of this nature, we introduce TacQuad, an aligned multi-modal multi-sensor tactile dataset from four different visuo-tactile sensors, which enables the explicit integration of various sensors. Recognizing that humans perceive the physical environment by acquiring diverse tactile information such as texture and pressure changes, we further propose to learn unified multi-sensor representations from both static and dynamic perspectives. By integrating tactile images and videos, we present AnyTouch, a unified static-dynamic multi-sensor representation learning framework with a multi-level structure, aimed at both enhancing comprehensive perceptual abilities and enabling effective cross-sensor transfer. This multi-level architecture captures pixel-level details from tactile data via masked modeling and enhances perception and transferability by learning semantic-level sensor-agnostic features through multi-modal alignment and cross-sensor matching. We provide a comprehensive analysis of multi-sensor transferability, and validate our method on various datasets and in the real-world pouring task. Experimental results show that our method outperforms existing methods, exhibits outstanding static and dynamic perception capabilities across various sensors.


Diagnosing and Re-learning for Balanced Multimodal Learning

arXiv.org Artificial Intelligence

To overcome the imbalanced multimodal learning problem, where models prefer the training of specific modalities, existing methods propose to control the training of uni-modal encoders from different perspectives, taking the inter-modal performance discrepancy as the basis. However, the intrinsic limitation of modality capacity is ignored. The scarcely informative modalities can be recognized as ``worse-learnt'' ones, which could force the model to memorize more noise, counterproductively affecting the multimodal model ability. Moreover, the current modality modulation methods narrowly concentrate on selected worse-learnt modalities, even suppressing the training of others. Hence, it is essential to consider the intrinsic limitation of modality capacity and take all modalities into account during balancing. To this end, we propose the Diagnosing \& Re-learning method. The learning state of each modality is firstly estimated based on the separability of its uni-modal representation space, and then used to softly re-initialize the corresponding uni-modal encoder. In this way, the over-emphasizing of scarcely informative modalities is avoided. In addition, encoders of worse-learnt modalities are enhanced, simultaneously avoiding the over-training of other modalities. Accordingly, multimodal learning is effectively balanced and enhanced. Experiments covering multiple types of modalities and multimodal frameworks demonstrate the superior performance of our simple-yet-effective method for balanced multimodal learning. The source code and dataset are available at \url{https://github.com/GeWu-Lab/Diagnosing_Relearning_ECCV2024}.


Enhancing Multi-modal Cooperation via Fine-grained Modality Valuation

arXiv.org Artificial Intelligence

One primary topic of multi-modal learning is to jointly incorporate heterogeneous information from different modalities. However, most models often suffer from unsatisfactory multi-modal cooperation, which could not jointly utilize all modalities well. Some methods are proposed to identify and enhance the worse learnt modality, but are often hard to provide the fine-grained observation of multi-modal cooperation at sample-level with theoretical support. Hence, it is essential to reasonably observe and improve the fine-grained cooperation between modalities, especially when facing realistic scenarios where the modality discrepancy could vary across different samples. To this end, we introduce a fine-grained modality valuation metric to evaluate the contribution of each modality at sample-level. Via modality valuation, we regretfully observe that the multi-modal model tends to rely on one specific modality, resulting in other modalities being low-contributing. We further analyze this issue and improve cooperation between modalities by enhancing the discriminative ability of low-contributing modalities in a targeted manner. Overall, our methods reasonably observe the fine-grained uni-modal contribution at sample-level and achieve considerable improvement on different multi-modal models.