Plotting

 Feng, Fuli


FLOW: A Feedback LOop FrameWork for Simultaneously Enhancing Recommendation and User Agents

arXiv.org Artificial Intelligence

Agents powered by large language models have shown remarkable reasoning and execution capabilities, attracting researchers to explore their potential in the recommendation domain. Previous studies have primarily focused on enhancing the capabilities of either recommendation agents or user agents independently, but have not considered the interaction and collaboration between recommendation agents and user agents. To address this gap, we propose a novel framework named FLOW, which achieves collaboration between the recommendation agent and the user agent by introducing a feedback loop. Specifically, the recommendation agent refines its understanding of the user's preferences by analyzing the user agent's feedback on previously suggested items, while the user agent leverages suggested items to uncover deeper insights into the user's latent interests. This iterative refinement process enhances the reasoning capabilities of both the recommendation agent and the user agent, enabling more precise recommendations and a more accurate simulation of user behavior. To demonstrate the effectiveness of the feedback loop, we evaluate both recommendation performance and user simulation performance on three widely used recommendation domain datasets. The experimental results indicate that the feedback loop can simultaneously improve the performance of both the recommendation and user agents.


MMDocBench: Benchmarking Large Vision-Language Models for Fine-Grained Visual Document Understanding

arXiv.org Artificial Intelligence

Large Vision-Language Models (LVLMs) have achieved remarkable performance in many vision-language tasks, yet their capabilities in fine-grained visual understanding remain insufficiently evaluated. Existing benchmarks either contain limited fine-grained evaluation samples that are mixed with other data, or are confined to object-level assessments in natural images. To holistically assess LVLMs' fine-grained visual understanding capabilities, we propose using document images with multi-granularity and multi-modal information to supplement natural images. In this light, we construct MMDocBench, a benchmark with various OCR-free document understanding tasks for the evaluation of fine-grained visual perception and reasoning abilities. MMDocBench defines 15 main tasks with 4,338 QA pairs and 11,353 supporting regions, covering various document images such as research papers, receipts, financial reports, Wikipedia tables, charts, and infographics. Based on MMDocBench, we conduct extensive experiments using 13 open-source and 3 proprietary advanced LVLMs, assessing their strengths and weaknesses across different tasks and document image types. The benchmark, task instructions, and evaluation code will be made publicly available.


Efficient Inference for Large Language Model-based Generative Recommendation

arXiv.org Artificial Intelligence

Large Language Model (LLM)-based generative recommendation has achieved notable success, yet its practical deployment is costly particularly due to excessive inference latency caused by autoregressive decoding. For lossless LLM decoding acceleration, Speculative Decoding (SD) has emerged as a promising solution. However, applying SD to generative recommendation presents unique challenges due to the requirement of generating top-K items (i.e., K distinct token sequences) as a recommendation list by beam search. This leads to more stringent verification in SD, where all the top-K sequences from the target LLM must be successfully drafted by the draft model at each decoding step. To alleviate this, we consider 1) boosting top-K sequence alignment between the draft model and the target LLM, and 2) relaxing the verification strategy to reduce trivial LLM calls. To this end, we propose an alignment framework named AtSpeed, which presents the AtSpeed-S optimization objective for top-K alignment under the strict top-K verification. Moreover, we introduce a relaxed sampling verification strategy that allows high-probability non-top-K drafted sequences to be accepted, significantly reducing LLM calls. Correspondingly, we propose AtSpeed-R for top-K alignment under this relaxed sampling verification. Empirical results on two real-world datasets demonstrate that AtSpeed significantly accelerates LLM-based generative recommendation, e.g., near 2x speedup under strict top-K verification and up to 2.5 speedup under relaxed sampling verification. The codes and datasets will be released in the near future.


A3S: A General Active Clustering Method with Pairwise Constraints

arXiv.org Artificial Intelligence

Active clustering aims to boost the clustering performance by integrating human-annotated pairwise constraints through strategic querying. Conventional approaches with semi-supervised clustering schemes encounter high query costs when applied to large datasets with numerous classes. To address these limitations, we propose a novel Adaptive Active Aggregation and Splitting (A3S) framework, falling within the cluster-adjustment scheme in active clustering. A3S features strategic active clustering adjustment on the initial cluster result, which is obtained by an adaptive clustering algorithm. In particular, our cluster adjustment is inspired by the quantitative analysis of Normalized mutual information gain under the information theory framework and can provably improve the clustering quality. The proposed A3S framework significantly elevates the performance and scalability of active clustering. In extensive experiments across diverse real-world datasets, A3S achieves desired results with significantly fewer human queries compared with existing methods.


Direct Multi-Turn Preference Optimization for Language Agents

arXiv.org Artificial Intelligence

Adapting Large Language Models (LLMs) for agent tasks is critical in developing language agents. Direct Preference Optimization (DPO) is a promising technique for this adaptation with the alleviation of compounding errors, offering a means to directly optimize Reinforcement Learning (RL) objectives. However, applying DPO to multi-turn tasks presents challenges due to the inability to cancel the partition function. Overcoming this obstacle involves making the partition function independent of the current state and addressing length disparities between preferred and dis-preferred trajectories. In this light, we replace the policy constraint with the state-action occupancy measure constraint in the RL objective and add length normalization to the Bradley-Terry model, yielding a novel loss function named DMPO for multi-turn agent tasks with theoretical explanations. Extensive experiments on three multi-turn agent task datasets confirm the effectiveness and superiority of the DMPO loss.


Debiased Recommendation with Noisy Feedback

arXiv.org Artificial Intelligence

Ratings of a user to most items in recommender systems are usually missing not at random (MNAR), largely because users are free to choose which items to rate. To achieve unbiased learning of the prediction model under MNAR data, three typical solutions have been proposed, including error-imputation-based (EIB), inverse-propensity-scoring (IPS), and doubly robust (DR) methods. However, these methods ignore an alternative form of bias caused by the inconsistency between the observed ratings and the users' true preferences, also known as noisy feedback or outcome measurement errors (OME), e.g., due to public opinion or low-quality data collection process. In this work, we study intersectional threats to the unbiased learning of the prediction model from data MNAR and OME in the collected data. First, we design OME-EIB, OME-IPS, and OME-DR estimators, which largely extend the existing estimators to combat OME in real-world recommendation scenarios. Next, we theoretically prove the unbiasedness and generalization bound of the proposed estimators. We further propose an alternate denoising training approach to achieve unbiased learning of the prediction model under MNAR data with OME. Extensive experiments are conducted on three real-world datasets and one semi-synthetic dataset to show the effectiveness of our proposed approaches. The code is available at https://github.com/haoxuanli-pku/KDD24-OME-DR.


Dual-Phase Accelerated Prompt Optimization

arXiv.org Artificial Intelligence

Gradient-free prompt optimization methods have made significant strides in enhancing the performance of closed-source Large Language Models (LLMs) across a wide range of tasks. However, existing approaches make light of the importance of high-quality prompt initialization and the identification of effective optimization directions, thus resulting in substantial optimization steps to obtain satisfactory performance. In this light, we aim to accelerate prompt optimization process to tackle the challenge of low convergence rate. We propose a dual-phase approach which starts with generating high-quality initial prompts by adopting a well-designed meta-instruction to delve into task-specific information, and iteratively optimize the prompts at the sentence level, leveraging previous tuning experience to expand prompt candidates and accept effective ones. Extensive experiments on eight datasets demonstrate the effectiveness of our proposed method, achieving a consistent accuracy gain over baselines with less than five optimization steps.


Counterfactual Debating with Preset Stances for Hallucination Elimination of LLMs

arXiv.org Artificial Intelligence

Large Language Models (LLMs) excel in various natural language processing tasks but struggle with hallucination issues. Existing solutions have considered utilizing LLMs' inherent reasoning abilities to alleviate hallucination, such as self-correction and diverse sampling methods. However, these methods often overtrust LLMs' initial answers due to inherent biases. The key to alleviating this issue lies in overriding LLMs' inherent biases for answer inspection. To this end, we propose a CounterFactual Multi-Agent Debate (CFMAD) framework. CFMAD presets the stances of LLMs to override their inherent biases by compelling LLMs to generate justifications for a predetermined answer's correctness. The LLMs with different predetermined stances are engaged with a skeptical critic for counterfactual debate on the rationality of generated justifications. Finally, the debate process is evaluated by a third-party judge to determine the final answer. Extensive experiments on four datasets of three tasks demonstrate the superiority of CFMAD over existing methods.


EAVE: Efficient Product Attribute Value Extraction via Lightweight Sparse-layer Interaction

arXiv.org Artificial Intelligence

Product attribute value extraction involves identifying the specific values associated with various attributes from a product profile. While existing methods often prioritize the development of effective models to improve extraction performance, there has been limited emphasis on extraction efficiency. However, in real-world scenarios, products are typically associated with multiple attributes, necessitating multiple extractions to obtain all corresponding values. In this work, we propose an Efficient product Attribute Value Extraction (EAVE) approach via lightweight sparse-layer interaction. Specifically, we employ a heavy encoder to separately encode the product context and attribute. The resulting non-interacting heavy representations of the context can be cached and reused for all attributes. Additionally, we introduce a light encoder to jointly encode the context and the attribute, facilitating lightweight interactions between them. To enrich the interaction within the lightweight encoder, we design a sparse-layer interaction module to fuse the non-interacting heavy representation into the lightweight encoder. Comprehensive evaluation on two benchmarks demonstrate that our method achieves significant efficiency gains with neutral or marginal loss in performance when the context is long and number of attributes is large. Our code is available \href{https://anonymous.4open.science/r/EAVE-EA18}{here}.


On the Maximal Local Disparity of Fairness-Aware Classifiers

arXiv.org Artificial Intelligence

Existing group fairness notions require algorithms to treat Fairness has become a crucial aspect in the development different groups equally, and the degree of fairness violation of trustworthy machine learning algorithms. is usually measured via the dissimilarity of model Current fairness metrics to measure predictions. For example, Demographic Parity (DP) requires the violation of demographic parity have the following model predictions to be independent of sensitive attributes drawbacks: (i) the average difference of (Dwork et al., 2012; Kamishima et al., 2012; Jiang model predictions on two groups cannot reflect et al., 2020). To measure the violation of DP, most of existing their distribution disparity, and (ii) the overall calculation works adopt DP metric, which calculates the difference along all possible predictions conceals in average predictions between the two demographic the extreme local disparity at or around certain groups (Zemel et al., 2013; Chuang & Mroueh, 2021; Li predictions. In this work, we propose a novel et al., 2023b). However, since having the same values in fairness metric called Maximal Cumulative ratio average predictions between the two groups cannot ensure Disparity along varying Predictions' neighborhood that the distributions are also the same, we argue that the (MCDP), for measuring the maximal local widely used DP may fail to detect the violation of demographic disparity of the fairness-aware classifiers.