Feng, Chao
Who's the MVP? A Game-Theoretic Evaluation Benchmark for Modular Attribution in LLM Agents
Yang, Yingxuan, Huang, Bo, Qi, Siyuan, Feng, Chao, Hu, Haoyi, Zhu, Yuxuan, Hu, Jinbo, Zhao, Haoran, He, Ziyi, Liu, Xiao, Wang, Zongyu, Qiu, Lin, Cao, Xuezhi, Cai, Xunliang, Yu, Yong, Zhang, Weinan
Large Language Model (LLM) agents frameworks often employ modular architectures, incorporating components such as planning, reasoning, action execution, and reflection to tackle complex tasks. However, quantifying the contribution of each module to overall system performance remains a significant challenge, impeding optimization and interpretability. To address this, we introduce CapaBench (Capability-level Assessment Benchmark), an evaluation framework grounded in cooperative game theory's Shapley Value, which systematically measures the marginal impact of individual modules and their interactions within an agent's architecture. By replacing default modules with test variants across all possible combinations, CapaBench provides a principle method for attributing performance contributions. Key contributions include: (1) We are the first to propose a Shapley Value-based methodology for quantifying the contributions of capabilities in LLM agents; (2) Modules with high Shapley Values consistently lead to predictable performance gains when combined, enabling targeted optimization; and (3) We build a multi-round dataset of over 1,500 entries spanning diverse domains and practical task scenarios, enabling comprehensive evaluation of agent capabilities. CapaBench bridges the gap between component-level evaluation and holistic system assessment, providing actionable insights for optimizing modular LLM agents and advancing their deployment in complex, real-world scenarios.
DMPA: Model Poisoning Attacks on Decentralized Federated Learning for Model Differences
Feng, Chao, Li, Yunlong, Gao, Yuanzhe, Celdrán, Alberto Huertas, von der Assen, Jan, Bovet, Gérôme, Stiller, Burkhard
Federated learning (FL) has garnered significant attention as a prominent privacy-preserving Machine Learning (ML) paradigm. Decentralized FL (DFL) eschews traditional FL's centralized server architecture, enhancing the system's robustness and scalability. However, these advantages of DFL also create new vulnerabilities for malicious participants to execute adversarial attacks, especially model poisoning attacks. In model poisoning attacks, malicious participants aim to diminish the performance of benign models by creating and disseminating the compromised model. Existing research on model poisoning attacks has predominantly concentrated on undermining global models within the Centralized FL (CFL) paradigm, while there needs to be more research in DFL. To fill the research gap, this paper proposes an innovative model poisoning attack called DMPA. This attack calculates the differential characteristics of multiple malicious client models and obtains the most effective poisoning strategy, thereby orchestrating a collusive attack by multiple participants. The effectiveness of this attack is validated across multiple datasets, with results indicating that the DMPA approach consistently surpasses existing state-of-the-art FL model poisoning attack strategies.
S-VOTE: Similarity-based Voting for Client Selection in Decentralized Federated Learning
Sánchez, Pedro Miguel Sánchez, Beltrán, Enrique Tomás Martínez, Feng, Chao, Bovet, Gérôme, Pérez, Gregorio Martínez, Celdrán, Alberto Huertas
Decentralized Federated Learning (DFL) enables collaborative, privacy-preserving model training without relying on a central server. This decentralized approach reduces bottlenecks and eliminates single points of failure, enhancing scalability and resilience. However, DFL also introduces challenges such as suboptimal models with non-IID data distributions, increased communication overhead, and resource usage. Thus, this work proposes S-VOTE, a voting-based client selection mechanism that optimizes resource usage and enhances model performance in federations with non-IID data conditions. S-VOTE considers an adaptive strategy for spontaneous local training that addresses participation imbalance, allowing underutilized clients to contribute without significantly increasing resource costs. Extensive experiments on benchmark datasets demonstrate the S-VOTE effectiveness. More in detail, it achieves lower communication costs by up to 21%, 4-6% faster convergence, and improves local performance by 9-17% compared to baseline methods in some configurations, all while achieving a 14-24% energy consumption reduction. These results highlight the potential of S-VOTE to address DFL challenges in heterogeneous environments.
ColNet: Collaborative Optimization in Decentralized Federated Multi-task Learning Systems
Feng, Chao, Kohler, Nicolas Fazli, Celdran, Alberto Huertas, Bovet, Gerome, Stiller, Burkhard
The integration of Federated Learning (FL) and Multi-Task Learning (MTL) has been explored to address client heterogeneity, with Federated Multi-Task Learning (FMTL) treating each client as a distinct task. However, most existing research focuses on data heterogeneity (e.g., addressing non-IID data) rather than task heterogeneity, where clients solve fundamentally different tasks. Additionally, much of the work relies on centralized settings with a server managing the federation, leaving the more challenging domain of decentralized FMTL largely unexplored. Thus, this work bridges this gap by proposing ColNet, a framework designed for heterogeneous tasks in decentralized federated environments. ColNet divides models into the backbone and task-specific layers, forming groups of similar clients, with group leaders performing conflict-averse cross-group aggregation. A pool of experiments with different federations demonstrated ColNet outperforms the compared aggregation schemes in decentralized settings with label and task heterogeneity scenarios.
Scalable Vision Language Model Training via High Quality Data Curation
Dong, Hongyuan, Kang, Zijian, Yin, Weijie, Liang, Xiao, Feng, Chao, Ran, Jiao
In this paper, we introduce SAIL-VL (ScAlable Vision Language Model TraIning via High QuaLity Data Curation), an open-source vision language model (VLM) of state-of-the-art (SOTA) performance with 2B parameters. We introduce three key improvements that contribute to SAIL-VL's leading performance: (1) Scalable high-quality visual understanding data construction: We implement a visual understanding data construction pipeline, which enables hundred-million-scale high-quality recaption data annotation. Equipped with this pipeline, we curate SAIL-Caption, a large-scale caption dataset with large quantity and the highest data quality compared with opensource caption datasets. (2) Scalable Pretraining with High-Quality Visual Understanding Data: We scale SAIL-VL's pretraining budget up to 131B tokens and show that even a 2B VLM benefits from scaled up training data sizes, exhibiting expected data size scaling laws in visual understanding and instruction following performance. (3) Scalable SFT via quantity and quality scaling: We introduce general guidance for instruction data curation to scale up instruction data continuously, allowing us to construct a large SFT dataset with the highest quality. To further improve SAIL-VL's performance, we propose quality scaling, a multi-stage training recipe with curriculum learning, to improve model performance scaling curves w.r.t. data sizes from logarithmic to be near-linear. SAIL-VL obtains the highest average score in 19 commonly used benchmarks in our evaluation and achieves top1 performance among VLMs of comparable sizes on OpenCompass (https://rank.opencompass.org.cn/leaderboard-multimodal). We release our SAIL-VL-2B model at HuggingFace (https://huggingface.co/BytedanceDouyinContent/SAIL-VL-2B).
From Models to Network Topologies: A Topology Inference Attack in Decentralized Federated Learning
Feng, Chao, Gao, Yuanzhe, Celdran, Alberto Huertas, Bovet, Gerome, Stiller, Burkhard
Federated Learning (FL) is widely recognized as a privacy-preserving machine learning paradigm due to its model-sharing mechanism that avoids direct data exchange. However, model training inevitably leaves exploitable traces that can be used to infer sensitive information. In Decentralized FL (DFL), the overlay topology significantly influences its models' convergence, robustness, and security. This study explores the feasibility of inferring the overlay topology of DFL systems based solely on model behavior, introducing a novel Topology Inference Attack. A taxonomy of topology inference attacks is proposed, categorizing them by the attacker's capabilities and knowledge. Practical attack strategies are developed for different scenarios, and quantitative experiments are conducted to identify key factors influencing the attack effectiveness. Experimental results demonstrate that analyzing only the public models of individual nodes can accurately infer the DFL topology, underscoring the risk of sensitive information leakage in DFL systems. This finding offers valuable insights for improving privacy preservation in decentralized learning environments.
FedEP: Tailoring Attention to Heterogeneous Data Distribution with Entropy Pooling for Decentralized Federated Learning
Feng, Chao, Guan, Hongjie, Celdrán, Alberto Huertas, von der Assen, Jan, Bovet, Gérôme, Stiller, Burkhard
Non-Independent and Identically Distributed (non-IID) data in Federated Learning (FL) causes client drift issues, leading to slower convergence and reduced model performance. While existing approaches mitigate this issue in Centralized FL (CFL) using a central server, Decentralized FL (DFL) remains underexplored. In DFL, the absence of a central entity results in nodes accessing a global view of the federation, further intensifying the challenges of non-IID data. Drawing on the entropy pooling algorithm employed in financial contexts to synthesize diverse investment opinions, this work proposes the Federated Entropy Pooling (FedEP) algorithm to mitigate the non-IID challenge in DFL. FedEP leverages Gaussian Mixture Models (GMM) to fit local data distributions, sharing statistical parameters among neighboring nodes to estimate the global distribution. Aggregation weights are determined using the entropy pooling approach between local and global distributions. By sharing only synthetic distribution information, FedEP preserves data privacy while minimizing communication overhead. Experimental results demonstrate that FedEP achieves faster convergence and outperforms state-of-the-art methods in various non-IID settings.
De-VertiFL: A Solution for Decentralized Vertical Federated Learning
Celdrán, Alberto Huertas, Feng, Chao, Banik, Sabyasachi, Bovet, Gerome, Perez, Gregorio Martinez, Stiller, Burkhard
Federated Learning (FL), introduced in 2016, was designed to enhance data privacy in collaborative model training environments. Among the FL paradigm, horizontal FL, where clients share the same set of features but different data samples, has been extensively studied in both centralized and decentralized settings. In contrast, Vertical Federated Learning (VFL), which is crucial in real-world decentralized scenarios where clients possess different, yet sensitive, data about the same entity, remains underexplored. Thus, this work introduces De-VertiFL, a novel solution for training models in a decentralized VFL setting. De-VertiFL contributes by introducing a new network architecture distribution, an innovative knowledge exchange scheme, and a distributed federated training process. Specifically, De-VertiFL enables the sharing of hidden layer outputs among federation clients, allowing participants to benefit from intermediate computations, thereby improving learning efficiency. De-VertiFL has been evaluated using a variety of well-known datasets, including both image and tabular data, across binary and multiclass classification tasks. The results demonstrate that De-VertiFL generally surpasses state-of-the-art methods in F1-score performance, while maintaining a decentralized and privacy-preserving framework.
This&That: Language-Gesture Controlled Video Generation for Robot Planning
Wang, Boyang, Sridhar, Nikhil, Feng, Chao, Van der Merwe, Mark, Fishman, Adam, Fazeli, Nima, Park, Jeong Joon
We propose a robot learning method for communicating, planning, and executing a wide range of tasks, dubbed This&That. We achieve robot planning for general tasks by leveraging the power of video generative models trained on internet-scale data containing rich physical and semantic context. In this work, we tackle three fundamental challenges in video-based planning: 1) unambiguous task communication with simple human instructions, 2) controllable video generation that respects user intents, and 3) translating visual planning into robot actions. We propose language-gesture conditioning to generate videos, which is both simpler and clearer than existing language-only methods, especially in complex and uncertain environments. We then suggest a behavioral cloning design that seamlessly incorporates the video plans. This&That demonstrates state-of-the-art effectiveness in addressing the above three challenges, and justifies the use of video generation as an intermediate representation for generalizable task planning and execution. Project website: https://cfeng16.github.io/this-and-that/.
Binding Touch to Everything: Learning Unified Multimodal Tactile Representations
Yang, Fengyu, Feng, Chao, Chen, Ziyang, Park, Hyoungseob, Wang, Daniel, Dou, Yiming, Zeng, Ziyao, Chen, Xien, Gangopadhyay, Rit, Owens, Andrew, Wong, Alex
The ability to associate touch with other modalities has huge implications for humans and computational systems. However, multimodal learning with touch remains challenging due to the expensive data collection process and non-standardized sensor outputs. We introduce UniTouch, a unified tactile model for vision-based touch sensors connected to multiple modalities, including vision, language, and sound. We achieve this by aligning our UniTouch embeddings to pretrained image embeddings already associated with a variety of other modalities. We further propose learnable sensor-specific tokens, allowing the model to learn from a set of heterogeneous tactile sensors, all at the same time. UniTouch is capable of conducting various touch sensing tasks in the zero-shot setting, from robot grasping prediction to touch image question answering. To the best of our knowledge, UniTouch is the first to demonstrate such capabilities. Project page: https://cfeng16.github.io/UniTouch/