Feinglass, Joshua
TROPE: TRaining-Free Object-Part Enhancement for Seamlessly Improving Fine-Grained Zero-Shot Image Captioning
Feinglass, Joshua, Yang, Yezhou
Zero-shot inference, where pre-trained models perform tasks without specific training data, is an exciting emergent ability of large models like CLIP. Although there has been considerable exploration into enhancing zero-shot abilities in image captioning (IC) for popular datasets such as MSCOCO and Flickr8k, these approaches fall short with fine-grained datasets like CUB, FLO, UCM-Captions, and Sydney-Captions. These datasets require captions to discern between visually and semantically similar classes, focusing on detailed object parts and their attributes. To overcome this challenge, we introduce TRaining-Free Object-Part Enhancement (TROPE). TROPE enriches a base caption with additional object-part details using object detector proposals and Natural Language Processing techniques. It complements rather than alters the base caption, allowing seamless integration with other captioning methods and offering users enhanced flexibility. Our evaluations show that TROPE consistently boosts performance across all tested zero-shot IC approaches and achieves state-of-the-art results on fine-grained IC datasets.
`Eyes of a Hawk and Ears of a Fox': Part Prototype Network for Generalized Zero-Shot Learning
Feinglass, Joshua, Thiagarajan, Jayaraman J., Anirudh, Rushil, Jayram, T. S., Yang, Yezhou
Current approaches in Generalized Zero-Shot Learning (GZSL) are built upon base models which consider only a single class attribute vector representation over the entire image. This is an oversimplification of the process of novel category recognition, where different regions of the image may have properties from different seen classes and thus have different predominant attributes. With this in mind, we take a fundamentally different approach: a pre-trained Vision-Language detector (VINVL) sensitive to attribute information is employed to efficiently obtain region features. A learned function maps the region features to region-specific attribute attention used to construct class part prototypes. We conduct experiments on a popular GZSL benchmark consisting of the CUB, SUN, and AWA2 datasets where our proposed Part Prototype Network (PPN) achieves promising results when compared with other popular base models. Corresponding ablation studies and analysis show that our approach is highly practical and has a distinct advantage over global attribute attention when localized proposals are available.
Towards Addressing the Misalignment of Object Proposal Evaluation for Vision-Language Tasks via Semantic Grounding
Feinglass, Joshua, Yang, Yezhou
Object proposal generation serves as a standard pre-processing step in Vision-Language (VL) tasks (image captioning, visual question answering, etc.). The performance of object proposals generated for VL tasks is currently evaluated across all available annotations, a protocol that we show is misaligned - higher scores do not necessarily correspond to improved performance on downstream VL tasks. Our work serves as a study of this phenomenon and explores the effectiveness of semantic grounding to mitigate its effects. To this end, we propose evaluating object proposals against only a subset of available annotations, selected by thresholding an annotation importance score. Importance of object annotations to VL tasks is quantified by extracting relevant semantic information from text describing the image. We show that our method is consistent and demonstrates greatly improved alignment with annotations selected by image captioning metrics and human annotation when compared against existing techniques. Lastly, we compare current detectors used in the Scene Graph Generation (SGG) benchmark as a use case, which serves as an example of when traditional object proposal evaluation techniques are misaligned.