Goto

Collaborating Authors

 Fazekas, György


Composers' Evaluations of an AI Music Tool: Insights for Human-Centred Design

arXiv.org Artificial Intelligence

We present a study that explores the role of user-centred design in developing Generative AI (GenAI) tools for music composition. Through semi-structured interviews with professional composers, we gathered insights on a novel generative model for creating variations, highlighting concerns around trust, transparency, and ethical design. The findings helped form a feedback loop, guiding improvements to the model that emphasised traceability, transparency and explainability. They also revealed new areas for innovation, including novel features for controllability and research questions on the ethical and practical implementation of GenAI models.


Exploring Transformer-Based Music Overpainting for Jazz Piano Variations

arXiv.org Artificial Intelligence

This paper explores transformer-based models for music overpainting, focusing on jazz piano variations. Music overpainting generates new variations while preserving the melodic and harmonic structure of the input. Existing approaches are limited by small datasets, restricting scalability and diversity. We introduce VAR4000, a subset of a larger dataset for jazz piano performances, consisting of 4,352 training pairs. Using a semi-automatic pipeline, we evaluate two transformer configurations on VAR4000, comparing their performance with the smaller JAZZVAR dataset. Preliminary results show promising improvements in generalisation and performance with the larger dataset configuration, highlighting the potential of transformer models to scale effectively for music overpainting on larger and more diverse datasets.


Differentiable All-pole Filters for Time-varying Audio Systems

arXiv.org Artificial Intelligence

Infinite impulse response filters are an essential building block of many time-varying audio systems, such as audio effects and synthesisers. However, their recursive structure impedes end-to-end training of these systems using automatic differentiation. Although non-recursive filter approximations like frequency sampling and frame-based processing have been proposed and widely used in previous works, they cannot accurately reflect the gradient of the original system. We alleviate this difficulty by re-expressing a time-varying all-pole filter to backpropagate the gradients through itself, so the filter implementation is not bound to the technical limitations of automatic differentiation frameworks. This implementation can be employed within audio systems containing filters with poles for efficient gradient evaluation. We demonstrate its training efficiency and expressive capabilities for modelling real-world dynamic audio systems on a phaser, time-varying subtractive synthesiser, and feed-forward compressor. We make our code and audio samples available and provide the trained audio effect and synth models in a VST plugin at https://diffapf.github.io/web/.


The Song Describer Dataset: a Corpus of Audio Captions for Music-and-Language Evaluation

arXiv.org Artificial Intelligence

We introduce the Song Describer dataset (SDD), a new crowdsourced corpus of high-quality audio-caption pairs, designed for the evaluation of music-and-language models. The dataset consists of 1.1k human-written natural language descriptions of 706 music recordings, all publicly accessible and released under Creative Common licenses. To showcase the use of our dataset, we benchmark popular models on three key music-and-language tasks (music captioning, text-to-music generation and music-language retrieval). Our experiments highlight the importance of cross-dataset evaluation and offer insights into how researchers can use SDD to gain a broader understanding of model performance.


Composer Style-specific Symbolic Music Generation Using Vector Quantized Discrete Diffusion Models

arXiv.org Artificial Intelligence

Emerging Denoising Diffusion Probabilistic Models (DDPM) have become increasingly utilised because of promising results they have achieved in diverse generative tasks with continuous data, such as image and sound synthesis. Nonetheless, the success of diffusion models has not been fully extended to discrete symbolic music. We propose to combine a vector quantized variational autoencoder (VQ-VAE) and discrete diffusion models for the generation of symbolic music with desired composer styles. The trained VQ-VAE can represent symbolic music as a sequence of indexes that correspond to specific entries in a learned codebook. Subsequently, a discrete diffusion model is used to model the VQ-VAE's discrete latent space. The diffusion model is trained to generate intermediate music sequences consisting of codebook indexes, which are then decoded to symbolic music using the VQ-VAE's decoder. The results demonstrate our model can generate symbolic music with target composer styles that meet the given conditions with a high accuracy of 72.36%.


Fast Diffusion GAN Model for Symbolic Music Generation Controlled by Emotions

arXiv.org Artificial Intelligence

Diffusion models have shown promising results for a wide range of generative tasks with continuous data, such as image and audio synthesis. However, little progress has been made on using diffusion models to generate discrete symbolic music because this new class of generative models are not well suited for discrete data while its iterative sampling process is computationally expensive. In this work, we propose a diffusion model combined with a Generative Adversarial Network, aiming to (i) alleviate one of the remaining challenges in algorithmic music generation which is the control of generation towards a target emotion, and (ii) mitigate the slow sampling drawback of diffusion models applied to symbolic music generation. We first used a trained Variational Autoencoder to obtain embeddings of a symbolic music dataset with emotion labels and then used those to train a diffusion model. Our results demonstrate the successful control of our diffusion model to generate symbolic music with a desired emotion. Our model achieves several orders of magnitude improvement in computational cost, requiring merely four time steps to denoise while the steps required by current state-of-the-art diffusion models for symbolic music generation is in the order of thousands.


The Role of Communication and Reference Songs in the Mixing Process: Insights from Professional Mix Engineers

arXiv.org Artificial Intelligence

Effective music mixing requires technical and creative finesse, but clear communication with the client is crucial. The mixing engineer must grasp the client's expectations, and preferences, and collaborate to achieve the desired sound. The tacit agreement for the desired sound of the mix is often established using guides like reference songs and demo mixes exchanged between the artist and the engineer and sometimes verbalised using semantic terms. This paper presents the findings of a two-phased exploratory study aimed at understanding how professional mixing engineers interact with clients and use their feedback to guide the mixing process. For phase one, semi-structured interviews were conducted with five mixing engineers with the aim of gathering insights about their communication strategies, creative processes, and decision-making criteria. Based on the inferences from these interviews, an online questionnaire was designed and administered to a larger group of 22 mixing engineers during the second phase. The results of this study shed light on the importance of collaboration, empathy, and intention in the mixing process, and can inform the development of smart multi-track mixing systems that better support these practices. By highlighting the significance of these findings, this paper contributes to the growing body of research on the collaborative nature of music production and provides actionable recommendations for the design and implementation of innovative mixing tools.


The Responsibility Problem in Neural Networks with Unordered Targets

arXiv.org Artificial Intelligence

We discuss the discontinuities that arise when mapping unordered objects to neural network outputs of fixed permutation, referred to as the responsibility problem. Prior work has proved the existence of the issue by identifying a single discontinuity. Here, we show that discontinuities under such models are uncountably infinite, motivating further research into neural networks for unordered data. The responsibility problem (Zhang et al., 2020b) describes an issue when training neural networks with unordered targets: the fixed permutation of output units requires that each assume a "responsibility" for some element. For feed-forward networks, the worst-case approximation of such discontinuous functions is arbitrarily poor for at least some subset of the input space (Kratsios & Zamanlooy, 2022) Empirically, degraded performance has been observed on set prediction tasks (Zhang et al., 2020a), motivating research into architectures for set generation which circumvent these discontinuities (Zhang et al., 2020a; Kosiorek et al., 2020; Rezatofighi et al., 2018).


Mesostructures: Beyond Spectrogram Loss in Differentiable Time-Frequency Analysis

arXiv.org Artificial Intelligence

Computer musicians refer to mesostructures as the intermediate levels of articulation between the microstructure of waveshapes and the macrostructure of musical forms. Examples of mesostructures include melody, arpeggios, syncopation, polyphonic grouping, and textural contrast. Despite their central role in musical expression, they have received limited attention in deep learning. Currently, autoencoders and neural audio synthesizers are only trained and evaluated at the scale of microstructure: i.e., local amplitude variations up to 100 milliseconds or so. In this paper, we formulate and address the problem of mesostructural audio modeling via a composition of a differentiable arpeggiator and time-frequency scattering. We empirically demonstrate that time--frequency scattering serves as a differentiable model of similarity between synthesis parameters that govern mesostructure. By exposing the sensitivity of short-time spectral distances to time alignment, we motivate the need for a time-invariant and multiscale differentiable time--frequency model of similarity at the level of both local spectra and spectrotemporal modulations.


Rigid-Body Sound Synthesis with Differentiable Modal Resonators

arXiv.org Artificial Intelligence

Physical models of rigid bodies are used for sound synthesis in applications from virtual environments to music production. Traditional methods such as modal synthesis often rely on computationally expensive numerical solvers, while recent deep learning approaches are limited by post-processing of their results. In this work we present a novel end-to-end framework for training a deep neural network to generate modal resonators for a given 2D shape and material, using a bank of differentiable IIR filters. We demonstrate our method on a dataset of synthetic objects, but train our model using an audio-domain objective, paving the way for physically-informed synthesisers to be learned directly from recordings of real-world objects.