Goto

Collaborating Authors

 Fang, Liri


AutoDCWorkflow: LLM-based Data Cleaning Workflow Auto-Generation and Benchmark

arXiv.org Artificial Intelligence

We investigate the reasoning capabilities of large language models (LLMs) for automatically generating data-cleaning workflows. To evaluate LLMs' ability to complete data-cleaning tasks, we implemented a pipeline for LLM-based Auto Data Cleaning Workflow (AutoDCWorkflow), prompting LLMs on data cleaning operations to repair three types of data quality issues: duplicates, missing values, and inconsistent data formats. Given a dirty table and a purpose (expressed as a query), this pipeline generates a minimal, clean table sufficient to address the purpose and the data cleaning workflow used to produce the table. The planning process involves three main LLM-driven components: (1) Select Target Columns: Identifies a set of target columns related to the purpose. (2) Inspect Column Quality: Assesses the data quality for each target column and generates a Data Quality Report as operation objectives. (3) Generate Operation & Arguments: Predicts the next operation and arguments based on the data quality report results. Additionally, we propose a data cleaning benchmark to evaluate the capability of LLM agents to automatically generate workflows that address data cleaning purposes of varying difficulty levels. The benchmark comprises the annotated datasets as a collection of purpose, raw table, clean table, data cleaning workflow, and answer set. In our experiments, we evaluated three LLMs that auto-generate purpose-driven data cleaning workflows. The results indicate that LLMs perform well in planning and generating data-cleaning workflows without the need for fine-tuning.


Parametric Graph Representations in the Era of Foundation Models: A Survey and Position

arXiv.org Artificial Intelligence

Graphs have been widely used in the past decades of big data and AI to model comprehensive relational data. When analyzing a graph's statistical properties, graph laws serve as essential tools for parameterizing its structure. Identifying meaningful graph laws can significantly enhance the effectiveness of various applications, such as graph generation and link prediction. Facing the large-scale foundation model developments nowadays, the study of graph laws reveals new research potential, e.g., providing multi-modal information for graph neural representation learning and breaking the domain inconsistency of different graph data. In this survey, we first review the previous study of graph laws from multiple perspectives, i.e., macroscope and microscope of graphs, low-order and high-order graphs, static and dynamic graphs, different observation spaces, and newly proposed graph parameters. After we review various real-world applications benefiting from the guidance of graph laws, we conclude the paper with current challenges and future research directions.


T-KAER: Transparency-enhanced Knowledge-Augmented Entity Resolution Framework

arXiv.org Artificial Intelligence

Entity resolution (ER) is the process of determining whether two representations refer to the same real-world entity and plays a crucial role in data curation and data cleaning. Recent studies have introduced the KAER framework, aiming to improve pre-trained language models by augmenting external knowledge. However, identifying and documenting the external knowledge that is being augmented and understanding its contribution to the model's predictions have received little to no attention in the research community. This paper addresses this gap by introducing T-KAER, the Transparency-enhanced Knowledge-Augmented Entity Resolution framework. To enhance transparency, three Transparency-related Questions (T-Qs) have been proposed: T-Q(1): What is the experimental process for matching results based on data inputs? T-Q(2): Which semantic information does KAER augment in the raw data inputs? T-Q(3): Which semantic information of the augmented data inputs influences the predictions? To address the T-Qs, T-KAER is designed to improve transparency by documenting the entity resolution processes in log files. In experiments, a citation dataset is used to demonstrate the transparency components of T-KAER. This demonstration showcases how T-KAER facilitates error analysis from both quantitative and qualitative perspectives, providing evidence on "what" semantic information is augmented and "why" the augmented knowledge influences predictions differently.


KAER: A Knowledge Augmented Pre-Trained Language Model for Entity Resolution

arXiv.org Artificial Intelligence

Entity resolution has been an essential and well-studied task in data cleaning research for decades. Existing work has discussed the feasibility of utilizing pre-trained language models to perform entity resolution and achieved promising results. However, few works have discussed injecting domain knowledge to improve the performance of pre-trained language models on entity resolution tasks. In this study, we propose Knowledge Augmented Entity Resolution (KAER), a novel framework named for augmenting pre-trained language models with external knowledge for entity resolution. We discuss the results of utilizing different knowledge augmentation and prompting methods to improve entity resolution performance. Our model improves on Ditto, the existing state-of-the-art entity resolution method. In particular, 1) KAER performs more robustly and achieves better results on "dirty data", and 2) with more general knowledge injection, KAER outperforms the existing baseline models on the textual dataset and dataset from the online product domain. 3) KAER achieves competitive results on highly domain-specific datasets, such as citation datasets, requiring the injection of expert knowledge in future work.