Not enough data to create a plot.
Try a different view from the menu above.
Fang, Cheng
Chance-constrained Static Schedules for Temporally Probabilistic Plans
Fang, Cheng (Massachusetts Institute of Technology) | Wang, Andrew J. (MIT) | Williams, Brian C. (CSAIL, MIT)
Time management under uncertainty is essential to large scale projects. From space exploration to industrial production, there is a need to schedule and perform activities. given complex specifications on timing. In order to generate schedules that are robust to uncertainty in the duration of activities, prior work has focused on a problem framing that uses an interval-bounded uncertainty representation. However, such approaches are unable to take advantage of known probability distributions over duration. In this paper we concentrate on a probabilistic formulation of temporal problems with uncertain duration, called the probabilistic simple temporal problem. As distributions often have an unbounded range of outcomes, we consider chance-constrained solutions, with guarantees on the probability of meeting temporal constraints. By considering distributions over uncertain duration, we are able to use risk as a resource, reason over the relative likelihood of outcomes, and derive higher utility solutions. We first demonstrate our approach by encoding the problem as a convex program. We then develop a more efficient hybrid algorithm whose parent solver generates risk allocations and whose child solver generates schedules for a particular risk allocation. The child is made efficient by leveraging existing interval-bounded scheduling algorithms, while the parent is made efficient by extracting conflicts over risk allocations. We perform numerical experiments to show the advantages of reasoning over probabilistic uncertainty, by comparing the utility of schedules generated with risk allocation against those generated from reasoning over bounded uncertainty. We also empirically show that solution time is greatly reduced by incorporating conflict-directed risk allocation.
An end-to-end deep learning approach for extracting stochastic dynamical systems with $\alpha$-stable L\'evy noise
Fang, Cheng, Lu, Yubin, Gao, Ting, Duan, Jinqiao
Recently, extracting data-driven governing laws of dynamical systems through deep learning frameworks has gained a lot of attention in various fields. Moreover, a growing amount of research work tends to transfer deterministic dynamical systems to stochastic dynamical systems, especially those driven by non-Gaussian multiplicative noise. However, lots of log-likelihood based algorithms that work well for Gaussian cases cannot be directly extended to non-Gaussian scenarios which could have high error and low convergence issues. In this work, we overcome some of these challenges and identify stochastic dynamical systems driven by $\alpha$-stable L\'evy noise from only random pairwise data. Our innovations include: (1) designing a deep learning approach to learn both drift and diffusion terms for L\'evy induced noise with $\alpha$ across all values, (2) learning complex multiplicative noise without restrictions on small noise intensity, (3) proposing an end-to-end complete framework for stochastic systems identification under a general input data assumption, that is, $\alpha$-stable random variable. Finally, numerical experiments and comparisons with the non-local Kramers-Moyal formulas with moment generating function confirm the effectiveness of our method.
Generalized Conflict-directed Search for Optimal Ordering Problems
Chen, Jingkai, Zhang, Yuening, Fang, Cheng, Williams, Brian C.
Solving planning and scheduling problems for multiple tasks with highly coupled state and temporal constraints is notoriously challenging. An appealing approach to effectively decouple the problem is to judiciously order the events such that decisions can be made over sequences of tasks. As many problems encountered in practice are over-constrained, we must instead find relaxed solutions in which certain requirements are dropped. This motivates a formulation of optimality with respect to the costs of relaxing constraints and the problem of finding an optimal ordering under which this relaxing cost is minimum. In this paper, we present Generalized Conflict-directed Ordering (GCDO), a branch-and-bound ordering method that generates an optimal total order of events by leveraging the generalized conflicts of both inconsistency and suboptimality from sub-solvers for cost estimation and solution space pruning. Due to its ability to reason over generalized conflicts, GCDO is much more efficient in finding high-quality total orders than the previous conflict-directed approach CDITO. We demonstrate this by benchmarking on temporal network configuration problems, which involves managing networks over time and makes necessary tradeoffs between network flows against CDITO and Mixed Integer-Linear Programing (MILP). Our algorithm is able to solve two orders of magnitude more benchmark problems to optimality and twice the problems compared to CDITO and MILP within a runtime limit, respectively.
Efficiently Exploring Ordering Problems through Conflict-directed Search
Chen, Jingkai, Fang, Cheng, Wang, David, Wang, Andrew, Williams, Brian
In planning and scheduling, solving problems with both state and temporal constraints is hard since these constraints may be highly coupled. Judicious orderings of events enable solvers to efficiently make decisions over sequences of actions to satisfy complex hybrid specifications. The ordering problem is thus fundamental to planning. Promising recent works have explored the ordering problem as search, incorporating a special tree structure for efficiency. However, such approaches only reason over partial order specifications. Having observed that an ordering is inconsistent with respect to underlying constraints, prior works do not exploit the tree structure to efficiently generate orderings that resolve the inconsistency. In this paper, we present Conflict-directed Incremental Total Ordering (CDITO), a conflict-directed search method to incrementally and systematically generate event total orders given ordering relations and conflicts returned by sub-solvers. Due to its ability to reason over conflicts, CDITO is much more efficient than Incremental Total Ordering. We demonstrate this by benchmarking on temporal network configuration problems that involve routing network flows and allocating bandwidth resources over time.
Resolving Over-Constrained Temporal Problems with Uncertainty through Conflict-Directed Relaxation
Yu, Peng, Williams, Brian, Fang, Cheng, Cui, Jing, Haslum, Patrik
Over-subscription, that is, being assigned too many things to do, is commonly encountered in temporal scheduling problems. As human beings, we often want to do more than we can actually do, and underestimate how long it takes to perform each task. Decision makers can benefit from aids that identify when these failure situations are likely, the root causes of these failures, and resolutions to these failures. In this paper, we present a decision assistant that helps users resolve over-subscribed temporal problems. The system works like an experienced advisor that can quickly identify the cause of failure underlying temporal problems and compute resolutions. The core of the decision assistant is the Best-first Conflict-Directed Relaxation (BCDR) algorithm, which can detect conflicting sets of constraints within temporal problems, and computes continuous relaxations for them that weaken constraints to the minimum extent, instead of removing them completely. BCDR is an extension to the Conflict-Directed A* algorithm, first developed in the model-based reasoning community to compute most likely system diagnoses or reconfigurations. It generalizes the discrete conflicts and relaxations, to hybrid conflicts and relaxations, which denote minimal inconsistencies and minimal relaxations to both discrete and continuous relaxable constraints. In addition, BCDR is capable of handling temporal uncertainty, expressed as either set-bounded or probabilistic durations, and can compute preferred trade-offs between the risk of violating a schedule requirement, versus the loss of utility by weakening those requirements. BCDR has been applied to several decision support applications in different domains, including deep-sea exploration, urban travel planning and transit system management. It has demonstrated its effectiveness in helping users resolve over-subscribed scheduling problems and evaluate the robustness of existing solutions. In our benchmark experiments, BCDR has also demonstrated its efficiency on solving large-scale scheduling problems in the aforementioned domains. Thanks to its conflict-driven approach for computing relaxations, BCDR achieves one to two orders of magnitude improvements on runtime performance when compared to state-of-the-art numerical solvers.
Chance-Constrained Path Planning with Continuous Time Safety Guarantees
Ariu, Kaito (The University of Tokyo) | Fang, Cheng (Massachusetts Institute of Technology) | Arantes, Marcio (Universidade de Sao Paulo) | Toledo, Claudio (Universidade de Sao Paulo) | Williams, Brian (Massachusetts Institute of Technology)
We extend chance-constrained path planning with direct method into continuous time. Chance-constrained path planning is a method to obtain the optimal path satisfying a specified risk (or probability of failure) value. Previous work expects trajectories' states as discrete information with respect to time. This discretized encoding makes the conversion from probabilistic path planning to deterministic path planning easy. However, risk guarantees are only produced for the discrete time model. The probability of constraints violation in continuous time could be larger than the discretized risk values. To address this problem, we modified the constraint encoding and risk assessment method. First, we introduce a computationally efficient mean path securing method, which uses fewer binary variables as compared with prior work. Second, we note that the deviation of the actual trajectory from the mean trajectory can be considered as a Brownian motion, for which the reflection principle holds in general. Therefore, we take advantage of the reflection principle to bound the probability of the constraint violation in continuous time. In numerical simulations, we confirmed faster solution generation, and the probability guarantees of the path in the continuous time model, with deterioration in the objective function.
Resolving Over-Constrained Probabilistic Temporal Problems through Chance Constraint Relaxation
Yu, Peng (Massachusetts Institute of Technology) | Fang, Cheng (Massachusetts Institute of Technology) | Williams, Brian (Massachusetts Institute of Technology)
When scheduling tasks for field-deployable systems, our solutions must be robust to the uncertainty inherent in the real world. Although human intuition is trusted to balance reward and risk, humans perform poorly in risk assessment at the scale and complexity of real world problems. In this paper, we present a decision aid system that helps human operators diagnose the source of risk and manage uncertainty in temporal problems. The core of the system is a conflict-directed relaxation algorithm, called Conflict-Directed Chance-constraint Relaxation (CDCR), which specializes in resolving over-constrained temporal problems with probabilistic durations and a chance constraint bounding the risk of failure. Given a temporal problem with uncertain duration, CDCR proposes execution strategies that operate at acceptable risk levels and pinpoints the source of risk. If no such strategy can be found that meets the chance constraint, it can help humans to repair the over-constrained problem by trading off between desirability of solution and acceptable risk levels. The decision aid has been incorporated in a mission advisory system for assisting oceanographers to schedule activities in deep-sea expeditions, and demonstrated its effectiveness in scenarios with realistic uncertainty.
Chance-Constrained Probabilistic Simple Temporal Problems
Fang, Cheng (MIT) | Yu, Peng (MIT) | Williams, Brian C. (MIT)
Scheduling under uncertainty is essential to many autonomous systems and logistics tasks. Probabilistic methods for solving temporal problems exist which quantify and attempt to minimize the probability of schedule failure. These methods are overly conservative, resulting in a loss in schedule utility. Chance constrained formalism address over-conservatism by imposing bounds on risk, while maximizing utility subject to these risk bounds. In this paper we present the probabilistic Simple Temporal Network (pSTN), a probabilistic formalism for representing temporal problems with bounded risk and a utility over event timing. We introduce a constrained optimisation algorithm for pSTNs that achieves compactness and efficiency through a problem encoding in terms of a parameterised STNU and its reformulation as a parameterised STN. We demonstrate through a car sharing application that our chance-constrained approach runs in the same time as the previous probabilistic approach, yields solutions with utility improvements of at least 5% over previous arts, while guaranteeing operation within the specified risk bound.
Symbolic Dynamic Programming for Continuous State and Action MDPs
Zamani, Zahra (ANU - NICTA The Australian National University National ICT of Australia) | Sanner, Scott (NICTA and ANU) | Fang, Cheng (Department of Aeronautics and Astronautics, MIT)
Many real-world decision-theoretic planning problemsare naturally modeled using both continuous state andaction (CSA) spaces, yet little work has provided ex-act solutions for the case of continuous actions. Inthis work, we propose a symbolic dynamic program-ming (SDP) solution to obtain the optimal closed-formvalue function and policy for CSA-MDPs with mul-tivariate continuous state and actions, discrete noise,piecewise linear dynamics, and piecewise linear (or re-stricted piecewise quadratic) reward. Our key contribu-tion over previous SDP work is to show how the contin-uous action maximization step in the dynamic program-ming backup can be evaluated optimally and symboli-cally — a task which amounts to symbolic constrainedoptimization subject to unknown state parameters; wefurther integrate this technique to work with an efficientand compact data structure for SDP — the extendedalgebraic decision diagram (XADD). We demonstrateempirical results on a didactic nonlinear planning exam-ple and two domains from operations research to showthe first automated exact solution to these problems.