Goto

Collaborating Authors

 Fan, Haoqi


LLaVA-Critic: Learning to Evaluate Multimodal Models

arXiv.org Artificial Intelligence

We introduce LLaVA-Critic, the first open-source large multimodal model (LMM) designed as a generalist evaluator to assess performance across a wide range of multimodal tasks. LLaVA-Critic is trained using a high-quality critic instructionfollowing dataset that incorporates diverse evaluation criteria and scenarios. Our experiments demonstrate the model's effectiveness in two key areas: (i) LMMas-a-Judge, where LLaVA-Critic provides reliable evaluation scores, performing on par with or surpassing GPT models on multiple evaluation benchmarks; and (ii) Preference Learning, where it generates reward signals for preference learning, enhancing model alignment capabilities. This work underscores the potential of open-source LMMs in self-critique and evaluation, setting the stage for future research into scalable, superhuman alignment feedback mechanisms for LMMs. The ability of learning to evaluate is increasingly taking on a pivotal role in the development of modern large multimodal models (LMMs), as pre-training on existing web data reaches maturity and the focus is shifting towards post-training with AI-enhanced synthetic data, which shows growing potential. Reliable AI evaluation is essential, not only for offering scalable solutions to reduce human labor in complex task assessments, but also for generating effective reward signals in reinforcement learning and guiding inference-time search (Ouyang et al., 2022; OpenAI, 2024a; Snell et al., 2024). It remains unexplored to develop open LMMs to play the role of a judge and evaluate the performance of multimodal models. For instance, a model can follow a well-designed, itemized evaluation criterion to provide a score between 1 and 10 for rating different model responses in a visual chat task (Liu et al., 2023b). Along with the score, it would also offer the associated reasoning behind the evaluation, ensuring transparency and consistency in assessing model performance. In this paper, we present the first attempt to curate the instruction-following data particularly for evaluation, based on which we develop a LMM, LLaVA-Critic. Two primary scenarios/goals of building LLaVA-Critic are highlighted: Scenario 1: LMM-as-a-Judge. Open-source LMMs that can deliver reliable evaluation scores, comparable to or surpassing proprietary models like GPT-4V (OpenAI, 2023)/GPT-4o (OpenAI, 2024b). These models can serve as a free alternative to replace commercial GPT models in various evaluation benchmarks. This approach enhances preference alignment with AI-generated feedback. In summary, our contributions are as follows: Critic Instruction-Following Data: We present a high-quality dataset tailored to follow instructions in complex evaluation setting to provide quantitative judgment and the corresponding reasoning process.


The effectiveness of MAE pre-pretraining for billion-scale pretraining

arXiv.org Artificial Intelligence

This paper revisits the standard pretrain-then-finetune paradigm used in computer vision for visual recognition tasks. Typically, state-of-the-art foundation models are pretrained using large scale (weakly) supervised datasets with billions of images. We introduce an additional pre-pretraining stage that is simple and uses the self-supervised MAE technique to initialize the model. While MAE has only been shown to scale with the size of models, we find that it scales with the size of the training dataset as well. Thus, our MAE-based pre-pretraining scales with both model and data size making it applicable for training foundation models. Pre-pretraining consistently improves both the model convergence and the downstream transfer performance across a range of model scales (millions to billions of parameters), and dataset sizes (millions to billions of images). We measure the effectiveness of pre-pretraining on 10 different visual recognition tasks spanning image classification, video recognition, object detection, low-shot classification and zero-shot recognition. Our largest model achieves new state-of-the-art results on iNaturalist-18 (91.7%), ImageNet-ReaL (91.1%), 1-shot ImageNet-1k (63.6%), and zero-shot transfer on Food-101 (96.2%). Our study reveals that model initialization plays a significant role, even for web-scale pretraining with billions of images, and our models are available publicly.


Hiera: A Hierarchical Vision Transformer without the Bells-and-Whistles

arXiv.org Artificial Intelligence

Modern hierarchical vision transformers have added several vision-specific components in the pursuit of supervised classification performance. While these components lead to effective accuracies and attractive FLOP counts, the added complexity actually makes these transformers slower than their vanilla ViT counterparts. In this paper, we argue that this additional bulk is unnecessary. By pretraining with a strong visual pretext task (MAE), we can strip out all the bells-and-whistles from a state-of-the-art multi-stage vision transformer without losing accuracy. In the process, we create Hiera, an extremely simple hierarchical vision transformer that is more accurate than previous models while being significantly faster both at inference and during training. We evaluate Hiera on a variety of tasks for image and video recognition. Our code and models are available at https://github.com/facebookresearch/hiera.


Reversible Vision Transformers

arXiv.org Artificial Intelligence

We present Reversible Vision Transformers, a memory efficient architecture design for visual recognition. By decoupling the GPU memory requirement from the depth of the model, Reversible Vision Transformers enable scaling up architectures with efficient memory usage. We adapt two popular models, namely Vision Transformer and Multiscale Vision Transformers, to reversible variants and benchmark extensively across both model sizes and tasks of image classification, object detection and video classification. Reversible Vision Transformers achieve a reduced memory footprint of up to 15.5x at roughly identical model complexity, parameters and accuracy, demonstrating the promise of reversible vision transformers as an efficient backbone for hardware resource limited training regimes. Finally, we find that the additional computational burden of recomputing activations is more than overcome for deeper models, where throughput can increase up to 2.3x over their non-reversible counterparts. Full code and trained models are available at https://github.com/facebookresearch/slowfast. A simpler, easy to understand and modify version is also available at https://github.com/karttikeya/minREV


Masked Feature Prediction for Self-Supervised Visual Pre-Training

arXiv.org Artificial Intelligence

We present Masked Feature Prediction (MaskFeat) for self-supervised pre-training of video models. Our approach first randomly masks out a portion of the input sequence and then predicts the feature of the masked regions. We study five different types of features and find Histograms of Oriented Gradients (HOG), a hand-crafted feature descriptor, works particularly well in terms of both performance and efficiency. We observe that the local contrast normalization in HOG is essential for good results, which is in line with earlier work using HOG for visual recognition. Our approach can learn abundant visual knowledge and drive large-scale Transformer-based models. Without using extra model weights or supervision, MaskFeat pre-trained on unlabeled videos achieves unprecedented results of 86.7% with MViT-L on Kinetics-400, 88.3% on Kinetics-600, 80.4% on Kinetics-700, 39.8 mAP on AVA, and 75.0% on SSv2. MaskFeat further generalizes to image input, which can be interpreted as a video with a single frame and obtains competitive results on ImageNet.


A Large-Scale Study on Unsupervised Spatiotemporal Representation Learning

arXiv.org Artificial Intelligence

We present a large-scale study on unsupervised spatiotemporal representation learning from videos. With a unified perspective on four recent image-based frameworks, we study a simple objective that can easily generalize all these methods to space-time. Our objective encourages temporally-persistent features in the same video, and in spite of its simplicity, it works surprisingly well across: (i) different unsupervised frameworks, (ii) pre-training datasets, (iii) downstream datasets, and (iv) backbone architectures. We draw a series of intriguing observations from this study, e.g., we discover that encouraging long-spanned persistency can be effective even if the timespan is 60 seconds. In addition to state-of-the-art results in multiple benchmarks, we report a few promising cases in which unsupervised pre-training can outperform its supervised counterpart. Code is made available at https://github.com/facebookresearch/SlowFast


Multiscale Vision Transformers

arXiv.org Artificial Intelligence

We present Multiscale Vision Transformers (MViT) for video and image recognition, by connecting the seminal idea of multiscale feature hierarchies with transformer models. Multiscale Transformers have several channel-resolution scale stages. Starting from the input resolution and a small channel dimension, the stages hierarchically expand the channel capacity while reducing the spatial resolution. This creates a multiscale pyramid of features with early layers operating at high spatial resolution to model simple low-level visual information, and deeper layers at spatially coarse, but complex, high-dimensional features. We evaluate this fundamental architectural prior for modeling the dense nature of visual signals for a variety of video recognition tasks where it outperforms concurrent vision transformers that rely on large scale external pre-training and are 5-10x more costly in computation and parameters. We further remove the temporal dimension and apply our model for image classification where it outperforms prior work on vision transformers. Code is available at: https://github.com/facebookresearch/SlowFast


HiT: Hierarchical Transformer with Momentum Contrast for Video-Text Retrieval

arXiv.org Artificial Intelligence

Video-Text Retrieval has been a hot research topic with the explosion of multimedia data on the Internet. Transformer for video-text learning has attracted increasing attention due to the promising performance.However, existing cross-modal transformer approaches typically suffer from two major limitations: 1) Limited exploitation of the transformer architecture where different layers have different feature characteristics. 2) End-to-end training mechanism limits negative interactions among samples in a mini-batch. In this paper, we propose a novel approach named Hierarchical Transformer (HiT) for video-text retrieval. HiT performs hierarchical cross-modal contrastive matching in feature-level and semantic-level to achieve multi-view and comprehensive retrieval results. Moreover, inspired by MoCo, we propose Momentum Cross-modal Contrast for cross-modal learning to enable large-scale negative interactions on-the-fly, which contributes to the generation of more precise and discriminative representations. Experimental results on three major Video-Text Retrieval benchmark datasets demonstrate the advantages of our methods.


Efficient K-Shot Learning With Regularized Deep Networks

AAAI Conferences

Feature representations from pre-trained deep neural networks have been known to exhibit excellent generalization and utility across a variety of related tasks. Fine-tuning is by far the simplest and most widely used approach that seeks to exploit and adapt these feature representations to novel tasks with limited data. Despite the effectiveness of fine-tuning, it is often sub-optimal and requires very careful optimization to prevent severe over-fitting to small datasets. The problem of sub-optimality and overfitting, is due in part to the large number of parameters used in a typical deep convolutional neural network. To address these problems, we propose a simple yet effective regularization method for fine-tuning pre-trained deep networks for the task of k-shot learning. To prevent overfitting, our key strategy is to cluster the model parameters while ensuring intra-cluster similarity and inter-cluster diversity of the parameters, effectively regularizing the dimensionality of the parameter search space. In particular, we identify groups of neurons within each layer of a deep network that shares similar activation patterns. When the network is to be fine-tuned for a classification task using only k examples, we propagate a single gradient to all of the neuron parameters that belong to the same group. The grouping of neurons is non-trivial as neuron activations depend on the distribution of the input data. To efficiently search for optimal groupings conditioned on the input data, we propose a reinforcement learning search strategy using recurrent networks to learn the optimal group assignments for each network layer. Experimental results show that our method can be easily applied to several popular convolutional neural networks and improve upon other state-of-the-art fine-tuning based k-shot learning strategies by more than 10%.


Efficient K-Shot Learning with Regularized Deep Networks

arXiv.org Machine Learning

Feature representations from pre-trained deep neural networks have been known to exhibit excellent generalization and utility across a variety of related tasks. Fine-tuning is by far the simplest and most widely used approach that seeks to exploit and adapt these feature representations to novel tasks with limited data. Despite the effectiveness of fine-tuning, itis often sub-optimal and requires very careful optimization to prevent severe over-fitting to small datasets. The problem of sub-optimality and over-fitting, is due in part to the large number of parameters used in a typical deep convolutional neural network. To address these problems, we propose a simple yet effective regularization method for fine-tuning pre-trained deep networks for the task of k-shot learning. To prevent overfitting, our key strategy is to cluster the model parameters while ensuring intra-cluster similarity and inter-cluster diversity of the parameters, effectively regularizing the dimensionality of the parameter search space. In particular, we identify groups of neurons within each layer of a deep network that shares similar activation patterns. When the network is to be fine-tuned for a classification task using only k examples, we propagate a single gradient to all of the neuron parameters that belong to the same group. The grouping of neurons is non-trivial as neuron activations depend on the distribution of the input data. To efficiently search for optimal groupings conditioned on the input data, we propose a reinforcement learning search strategy using recurrent networks to learn the optimal group assignments for each network layer. Experimental results show that our method can be easily applied to several popular convolutional neural networks and improve upon other state-of-the-art fine-tuning based k-shot learning strategies by more than10%