Goto

Collaborating Authors

 Faloutsos, Christos


Less is More: SlimG for Accurate, Robust, and Interpretable Graph Mining

arXiv.org Artificial Intelligence

How can we solve semi-supervised node classification in various graphs possibly with noisy features and structures? Graph neural networks (GNNs) have succeeded in many graph mining tasks, but their generalizability to various graph scenarios is limited due to the difficulty of training, hyperparameter tuning, and the selection of a model itself. Einstein said that we should "make everything as simple as possible, but not simpler." We rephrase it into the careful simplicity principle: a carefully-designed simple model can surpass sophisticated ones in real-world graphs. Based on the principle, we propose SlimG for semi-supervised node classification, which exhibits four desirable properties: It is (a) accurate, winning or tying on 10 out of 13 real-world datasets; (b) robust, being the only one that handles all scenarios of graph data (homophily, heterophily, random structure, noisy features, etc.); (c) fast and scalable, showing up to 18 times faster training in million-scale graphs; and (d) interpretable, thanks to the linearity and sparsity. We explain the success of SlimG through a systematic study of the designs of existing GNNs, sanity checks, and comprehensive ablation studies.


MetaGL: Evaluation-Free Selection of Graph Learning Models via Meta-Learning

arXiv.org Artificial Intelligence

Given a graph learning task, such as link prediction, on a new graph, how can we select the best method as well as its hyperparameters (collectively called a model) without having to train or evaluate any model on the new graph? Model selection for graph learning has been largely ad hoc. A typical approach has been to apply popular methods to new datasets, but this is often suboptimal. On the other hand, systematically comparing models on the new graph quickly becomes too costly, or even impractical. In this work, we develop the first meta-learning approach for evaluation-free graph learning model selection, called MetaGL, which utilizes the prior performances of existing methods on various benchmark graph datasets to automatically select an effective model for the new graph, without any model training or evaluations. To quantify similarities across a wide variety of graphs, we introduce specialized meta-graph features that capture the structural characteristics of a graph. Then we design G-M network, which represents the relations among graphs and models, and develop a graph-based meta-learner operating on this G-M network, which estimates the relevance of each model to different graphs. Extensive experiments show that using MetaGL to select a model for the new graph greatly outperforms several existing meta-learning techniques tailored for graph learning model selection (up to 47% better), while being extremely fast at test time (~1 sec).


PaGE-Link: Path-based Graph Neural Network Explanation for Heterogeneous Link Prediction

arXiv.org Artificial Intelligence

Transparency and accountability have become major concerns for black-box machine learning (ML) models. Proper explanations for the model behavior increase model transparency and help researchers develop more accountable models. Graph neural networks (GNN) have recently shown superior performance in many graph ML problems than traditional methods, and explaining them has attracted increased interest. However, GNN explanation for link prediction (LP) is lacking in the literature. LP is an essential GNN task and corresponds to web applications like recommendation and sponsored search on web. Given existing GNN explanation methods only address node/graph-level tasks, we propose Path-based GNN Explanation for heterogeneous Link prediction (PaGE-Link) that generates explanations with connection interpretability, enjoys model scalability, and handles graph heterogeneity. Qualitatively, PaGE-Link can generate explanations as paths connecting a node pair, which naturally captures connections between the two nodes and easily transfer to human-interpretable explanations. Quantitatively, explanations generated by PaGE-Link improve AUC for recommendation on citation and user-item graphs by 9 - 35% and are chosen as better by 78.79% of responses in human evaluation.


Train Your Own GNN Teacher: Graph-Aware Distillation on Textual Graphs

arXiv.org Artificial Intelligence

How can we learn effective node representations on textual graphs? Graph Neural Networks (GNNs) that use Language Models (LMs) to encode textual information of graphs achieve state-of-the-art performance in many node classification tasks. Yet, combining GNNs with LMs has not been widely explored for practical deployments due to its scalability issues. In this work, we tackle this challenge by developing a Graph-Aware Distillation framework (GraD) to encode graph structures into an LM for graph-free, fast inference. Different from conventional knowledge distillation, GraD jointly optimizes a GNN teacher and a graph-free student over the graph's nodes via a shared LM. This encourages the graph-free student to exploit graph information encoded by the GNN teacher while at the same time, enables the GNN teacher to better leverage textual information from unlabeled nodes. As a result, the teacher and the student models learn from each other to improve their overall performance.


CGC: Contrastive Graph Clustering for Community Detection and Tracking

arXiv.org Artificial Intelligence

Given entities and their interactions in the web data, which may have occurred at different time, how can we find communities of entities and track their evolution? In this paper, we approach this important task from graph clustering perspective. Recently, state-of-the-art clustering performance in various domains has been achieved by deep clustering methods. Especially, deep graph clustering (DGC) methods have successfully extended deep clustering to graph-structured data by learning node representations and cluster assignments in a joint optimization framework. Despite some differences in modeling choices (e.g., encoder architectures), existing DGC methods are mainly based on autoencoders and use the same clustering objective with relatively minor adaptations. Also, while many real-world graphs are dynamic, previous DGC methods considered only static graphs. In this work, we develop CGC, a novel end-to-end framework for graph clustering, which fundamentally differs from existing methods. CGC learns node embeddings and cluster assignments in a contrastive graph learning framework, where positive and negative samples are carefully selected in a multi-level scheme such that they reflect hierarchical community structures and network homophily. Also, we extend CGC for time-evolving data, where temporal graph clustering is performed in an incremental learning fashion, with the ability to detect change points. Extensive evaluation on real-world graphs demonstrates that the proposed CGC consistently outperforms existing methods.


ExplainFix: Explainable Spatially Fixed Deep Networks

arXiv.org Artificial Intelligence

Is there an initialization for deep networks that requires no learning? ExplainFix adopts two design principles: the "fixed filters" principle that all spatial filter weights of convolutional neural networks can be fixed at initialization and never learned, and the "nimbleness" principle that only few network parameters suffice. We contribute (a) visual model-based explanations, (b) speed and accuracy gains, and (c) novel tools for deep convolutional neural networks. ExplainFix gives key insights that spatially fixed networks should have a steered initialization, that spatial convolution layers tend to prioritize low frequencies, and that most network parameters are not necessary in spatially fixed models. ExplainFix models have up to 100x fewer spatial filter kernels than fully learned models and matching or improved accuracy. Our extensive empirical analysis confirms that ExplainFix guarantees nimbler models (train up to 17\% faster with channel pruning), matching or improved predictive performance (spanning 13 distinct baseline models, four architectures and two medical image datasets), improved robustness to larger learning rate, and robustness to varying model size. We are first to demonstrate that all spatial filters in state-of-the-art convolutional deep networks can be fixed at initialization, not learned.


OrthoReg: Improving Graph-regularized MLPs via Orthogonality Regularization

arXiv.org Artificial Intelligence

Graph Neural Networks (GNNs) are currently dominating in modeling graph-structure data, while their high reliance on graph structure for inference significantly impedes them from widespread applications. By contrast, Graph-regularized MLPs (GR-MLPs) implicitly inject the graph structure information into model weights, while their performance can hardly match that of GNNs in most tasks. This motivates us to study the causes of the limited performance of GR-MLPs. In this paper, we first demonstrate that node embeddings learned from conventional GR-MLPs suffer from dimensional collapse, a phenomenon in which the largest a few eigenvalues dominate the embedding space, through empirical observations and theoretical analysis. As a result, the expressive power of the learned node representations is constrained. We further propose OrthoReg, a novel GR-MLP model to mitigate the dimensional collapse issue. Through a soft regularization loss on the correlation matrix of node embeddings, OrthoReg explicitly encourages orthogonal node representations and thus can naturally avoid dimensionally collapsed representations. Experiments on traditional transductive semi-supervised classification tasks and inductive node classification for cold-start scenarios demonstrate its effectiveness and superiority.


Benefit-aware Early Prediction of Health Outcomes on Multivariate EEG Time Series

arXiv.org Artificial Intelligence

Given a cardiac-arrest patient being monitored in the ICU (intensive care unit) for brain activity, how can we predict their health outcomes as early as possible? Early decision-making is critical in many applications, e.g. monitoring patients may assist in early intervention and improved care. On the other hand, early prediction on EEG data poses several challenges: (i) earliness-accuracy trade-off; observing more data often increases accuracy but sacrifices earliness, (ii) large-scale (for training) and streaming (online decision-making) data processing, and (iii) multi-variate (due to multiple electrodes) and multi-length (due to varying length of stay of patients) time series. Motivated by this real-world application, we present BeneFitter that infuses the incurred savings from an early prediction as well as the cost from misclassification into a unified domain-specific target called benefit. Unifying these two quantities allows us to directly estimate a single target (i.e. benefit), and importantly, dictates exactly when to output a prediction: when benefit estimate becomes positive. BeneFitter (a) is efficient and fast, with training time linear in the number of input sequences, and can operate in real-time for decision-making, (b) can handle multi-variate and variable-length time-series, suitable for patient data, and (c) is effective, providing up to 2x time-savings with equal or better accuracy as compared to competitors.


Autonomous Graph Mining Algorithm Search with Best Speed/Accuracy Trade-off

arXiv.org Artificial Intelligence

Graph data is ubiquitous in academia and industry, from social networks to bioinformatics. The pervasiveness of graphs today has raised the demand for algorithms that can answer various questions: Which products would a user like to purchase given her order list? Which users are buying fake followers to increase their public reputation? Myriads of new graph mining algorithms are proposed every year to answer such questions - each with a distinct problem formulation, computational time, and memory footprint. This lack of unity makes it difficult for a practitioner to compare different algorithms and pick the most suitable one for a specific application. These challenges - even more severe for non-experts - create a gap in which state-of-the-art techniques developed in academic settings fail to be optimally deployed in real-world applications. To bridge this gap, we propose AUTOGM, an automated system for graph mining algorithm development. We first define a unified framework UNIFIEDGM that integrates various message-passing based graph algorithms, ranging from conventional algorithms like PageRank to graph neural networks. Then UNIFIEDGM defines a search space in which five parameters are required to determine a graph algorithm. Under this search space, AUTOGM explicitly optimizes for the optimal parameter set of UNIFIEDGM using Bayesian Optimization. AUTOGM defines a novel budget-aware objective function for the optimization to incorporate a practical issue - finding the best speed-accuracy trade-off under a computation budget - into the graph algorithm generation problem. Experiments on real-world benchmark datasets demonstrate that AUTOGM generates novel graph mining algorithms with the best speed/accuracy trade-off compared to existing models with heuristic parameters.


J-Recs: Principled and Scalable Recommendation Justification

arXiv.org Artificial Intelligence

Online recommendation is an essential functionality across a variety of services, including e-commerce and video streaming, where items to buy, watch, or read are suggested to users. Justifying recommendations, i.e., explaining why a user might like the recommended item, has been shown to improve user satisfaction and persuasiveness of the recommendation. In this paper, we develop a method for generating post-hoc justifications that can be applied to the output of any recommendation algorithm. Existing post-hoc methods are often limited in providing diverse justifications, as they either use only one of many available types of input data, or rely on the predefined templates. We address these limitations of earlier approaches by developing J-Recs, a method for producing concise and diverse justifications. J-Recs is a recommendation model-agnostic method that generates diverse justifications based on various types of product and user data (e.g., purchase history and product attributes). The challenge of jointly processing multiple types of data is addressed by designing a principled graph-based approach for justification generation. In addition to theoretical analysis, we present an extensive evaluation on synthetic and real-world data. Our results show that J-Recs satisfies desirable properties of justifications, and efficiently produces effective justifications, matching user preferences up to 20% more accurately than baselines.