Goto

Collaborating Authors

 Fabbri, Francesco


Policy-as-Prompt: Rethinking Content Moderation in the Age of Large Language Models

arXiv.org Artificial Intelligence

Content moderation plays a critical role in shaping safe and inclusive online environments, balancing platform standards, user expectations, and regulatory frameworks. Traditionally, this process involves operationalising policies into guidelines, which are then used by downstream human moderators for enforcement, or to further annotate datasets for training machine learning moderation models. However, recent advancements in large language models (LLMs) are transforming this landscape. These models can now interpret policies directly as textual inputs, eliminating the need for extensive data curation. This approach offers unprecedented flexibility, as moderation can be dynamically adjusted through natural language interactions. This paradigm shift raises important questions about how policies are operationalised and the implications for content moderation practices. In this paper, we formalise the emerging policy-as-prompt framework and identify five key challenges across four domains: Technical Implementation (1. translating policy to prompts, 2. sensitivity to prompt structure and formatting), Sociotechnical (3. the risk of technological determinism in policy formation), Organisational (4. evolving roles between policy and machine learning teams), and Governance (5. model governance and accountability). Through analysing these challenges across technical, sociotechnical, organisational, and governance dimensions, we discuss potential mitigation approaches. This research provides actionable insights for practitioners and lays the groundwork for future exploration of scalable and adaptive content moderation systems in digital ecosystems.


IOHunter: Graph Foundation Model to Uncover Online Information Operations

arXiv.org Artificial Intelligence

Social media platforms have become vital spaces for public discourse, serving as modern agor\'as where a wide range of voices influence societal narratives. However, their open nature also makes them vulnerable to exploitation by malicious actors, including state-sponsored entities, who can conduct information operations (IOs) to manipulate public opinion. The spread of misinformation, false news, and misleading claims threatens democratic processes and societal cohesion, making it crucial to develop methods for the timely detection of inauthentic activity to protect the integrity of online discourse. In this work, we introduce a methodology designed to identify users orchestrating information operations, a.k.a. \textit{IO drivers}, across various influence campaigns. Our framework, named \texttt{IOHunter}, leverages the combined strengths of Language Models and Graph Neural Networks to improve generalization in \emph{supervised}, \emph{scarcely-supervised}, and \emph{cross-IO} contexts. Our approach achieves state-of-the-art performance across multiple sets of IOs originating from six countries, significantly surpassing existing approaches. This research marks a step toward developing Graph Foundation Models specifically tailored for the task of IO detection on social media platforms.


Algorithmic Drift: A Simulation Framework to Study the Effects of Recommender Systems on User Preferences

arXiv.org Artificial Intelligence

Digital platforms such as social media and e-commerce websites adopt Recommender Systems to provide value to the user. However, the social consequences deriving from their adoption are still unclear. Many scholars argue that recommenders may lead to detrimental effects, such as bias-amplification deriving from the feedback loop between algorithmic suggestions and users' choices. Nonetheless, the extent to which recommenders influence changes in users leaning remains uncertain. In this context, it is important to provide a controlled environment for evaluating the recommendation algorithm before deployment. To address this, we propose a stochastic simulation framework that mimics user-recommender system interactions in a long-term scenario. In particular, we simulate the user choices by formalizing a user model, which comprises behavioral aspects, such as the user resistance towards the recommendation algorithm and their inertia in relying on the received suggestions. Additionally, we introduce two novel metrics for quantifying the algorithm's impact on user preferences, specifically in terms of drift over time. We conduct an extensive evaluation on multiple synthetic datasets, aiming at testing the robustness of our framework when considering different scenarios and hyper-parameters setting. The experimental results prove that the proposed methodology is effective in detecting and quantifying the drift over the users preferences by means of the simulation. All the code and data used to perform the experiments are publicly available.


Towards Graph Foundation Models for Personalization

arXiv.org Artificial Intelligence

In the realm of personalization, integrating diverse information sources such as consumption signals and content-based representations is becoming increasingly critical to build state-of-the-art solutions. In this regard, two of the biggest trends in research around this subject are Graph Neural Networks (GNNs) and Foundation Models (FMs). While GNNs emerged as a popular solution in industry for powering personalization at scale, FMs have only recently caught attention for their promising performance in personalization tasks like ranking and retrieval. In this paper, we present a graph-based foundation modeling approach tailored to personalization. Central to this approach is a Heterogeneous GNN (HGNN) designed to capture multi-hop content and consumption relationships across a range of recommendable item types. To ensure the generality required from a Foundation Model, we employ a Large Language Model (LLM) text-based featurization of nodes that accommodates all item types, and construct the graph using co-interaction signals, which inherently transcend content specificity. To facilitate practical generalization, we further couple the HGNN with an adaptation mechanism based on a two-tower (2T) architecture, which also operates agnostically to content type. This multi-stage approach ensures high scalability; while the HGNN produces general purpose embeddings, the 2T component models in a continuous space the sheer size of user-item interaction data. Our comprehensive approach has been rigorously tested and proven effective in delivering recommendations across a diverse array of products within a real-world, industrial audio streaming platform.


Personalized Audiobook Recommendations at Spotify Through Graph Neural Networks

arXiv.org Artificial Intelligence

In the ever-evolving digital audio landscape, Spotify, well-known for its music and talk content, has recently introduced audiobooks to its vast user base. While promising, this move presents significant challenges for personalized recommendations. Unlike music and podcasts, audiobooks, initially available for a fee, cannot be easily skimmed before purchase, posing higher stakes for the relevance of recommendations. Furthermore, introducing a new content type into an existing platform confronts extreme data sparsity, as most users are unfamiliar with this new content type. Lastly, recommending content to millions of users requires the model to react fast and be scalable. To address these challenges, we leverage podcast and music user preferences and introduce 2T-HGNN, a scalable recommendation system comprising Heterogeneous Graph Neural Networks (HGNNs) and a Two Tower (2T) model. This novel approach uncovers nuanced item relationships while ensuring low latency and complexity. We decouple users from the HGNN graph and propose an innovative multi-link neighbor sampler. These choices, together with the 2T component, significantly reduce the complexity of the HGNN model. Empirical evaluations involving millions of users show significant improvement in the quality of personalized recommendations, resulting in a +46% increase in new audiobooks start rate and a +23% boost in streaming rates. Intriguingly, our model's impact extends beyond audiobooks, benefiting established products like podcasts.


FedFNN: Faster Training Convergence Through Update Predictions in Federated Recommender Systems

arXiv.org Artificial Intelligence

Federated Learning (FL) has emerged as a key approach for distributed machine learning, enhancing online personalization while ensuring user data privacy. Instead of sending private data to a central server as in traditional approaches, FL decentralizes computations: devices train locally and share updates with a global server. A primary challenge in this setting is achieving fast and accurate model training--vital for recommendation systems where delays can compromise user engagement. This paper introduces FedFNN, an algorithm that accelerates decentralized model training. In FL, only a subset of users are involved in each training epoch. FedFNN employs supervised learning to predict weight updates from unsampled users, using updates from the sampled set. Our evaluations, using real and synthetic data, show: (i) FedFNN achieves training speeds 5x faster than leading methods, maintaining or improving accuracy; (ii) the algorithm's performance is consistent regardless of client cluster variations; (iii) FedFNN outperforms other methods in scenarios with limited client availability, converging more quickly.


Max-Min Diversification with Fairness Constraints: Exact and Approximation Algorithms

arXiv.org Artificial Intelligence

This has raised concerns about the possibility that algorithms may produce unfair and discriminatory decisions for specific population groups, particularly in sensitive socio-computational domains such as voting, hiring, banking, education, and criminal justice [12, 25]. To alleviate such concerns, there has been a lot of research devoted to incorporating fairness into the algorithms for automated decision tasks, including classification [14], clustering [10], ranking [24, 32], matching [28], and data summarization [8, 20]. This paper considers the diversity maximization problem and addresses its fairness-aware variant. The problem consists in selecting a diverse subset of items from a given dataset and is encountered in data summarization [8, 23], web search [2], recommendation [21], feature selection [31], and elsewhere [34]. Existing literature on the problem of diversity maximization primarily focuses on two objectives, namely max-min diversification (MMD), which aims to maximize the minimum distance between any pair of selected items, and max-sum diversification (MSD), which seeks to maximize the sum of pairwise distances between selected items. As shown in Figure 1, MMD tends to cover the data range uniformly, while MSD tends to pick "outliers" and may include highly similar items in the solution. Since the notion of diversity captured by MMD better represents the property that data summarization, feature selection, and many other tasks target with their solutions, we will only consider MMD in this paper. To be precise, given a set V of n items in a metric space and a positive integer k n, MMD asks for a size-k subset S of V to maximize the minimum pairwise distance within S. In particular, we study the fair max-min diversification (FMMD) problem, a variant of MMD that aims not only to maximize the diversity measure defined above but also to guarantee the satisfaction of group fairness constraints as described below.


Streaming Algorithms for Diversity Maximization with Fairness Constraints

arXiv.org Artificial Intelligence

Diversity maximization is a fundamental problem with wide applications in data summarization, web search, and recommender systems. Given a set $X$ of $n$ elements, it asks to select a subset $S$ of $k \ll n$ elements with maximum \emph{diversity}, as quantified by the dissimilarities among the elements in $S$. In this paper, we focus on the diversity maximization problem with fairness constraints in the streaming setting. Specifically, we consider the max-min diversity objective, which selects a subset $S$ that maximizes the minimum distance (dissimilarity) between any pair of distinct elements within it. Assuming that the set $X$ is partitioned into $m$ disjoint groups by some sensitive attribute, e.g., sex or race, ensuring \emph{fairness} requires that the selected subset $S$ contains $k_i$ elements from each group $i \in [1,m]$. A streaming algorithm should process $X$ sequentially in one pass and return a subset with maximum \emph{diversity} while guaranteeing the fairness constraint. Although diversity maximization has been extensively studied, the only known algorithms that can work with the max-min diversity objective and fairness constraints are very inefficient for data streams. Since diversity maximization is NP-hard in general, we propose two approximation algorithms for fair diversity maximization in data streams, the first of which is $\frac{1-\varepsilon}{4}$-approximate and specific for $m=2$, where $\varepsilon \in (0,1)$, and the second of which achieves a $\frac{1-\varepsilon}{3m+2}$-approximation for an arbitrary $m$. Experimental results on real-world and synthetic datasets show that both algorithms provide solutions of comparable quality to the state-of-the-art algorithms while running several orders of magnitude faster in the streaming setting.


Rewiring What-to-Watch-Next Recommendations to Reduce Radicalization Pathways

arXiv.org Artificial Intelligence

Recommender systems typically suggest to users content similar to what they consumed in the past. If a user happens to be exposed to strongly polarized content, she might subsequently receive recommendations which may steer her towards more and more radicalized content, eventually being trapped in what we call a "radicalization pathway". In this paper, we study the problem of mitigating radicalization pathways using a graph-based approach. Specifically, we model the set of recommendations of a "what-to-watch-next" recommender as a d-regular directed graph where nodes correspond to content items, links to recommendations, and paths to possible user sessions. We measure the "segregation" score of a node representing radicalized content as the expected length of a random walk from that node to any node representing non-radicalized content. High segregation scores are associated to larger chances to get users trapped in radicalization pathways. Hence, we define the problem of reducing the prevalence of radicalization pathways by selecting a small number of edges to "rewire", so to minimize the maximum of segregation scores among all radicalized nodes, while maintaining the relevance of the recommendations. We prove that the problem of finding the optimal set of recommendations to rewire is NP-hard and NP-hard to approximate within any factor. Therefore, we turn our attention to heuristics, and propose an efficient yet effective greedy algorithm based on the absorbing random walk theory. Our experiments on real-world datasets in the context of video and news recommendations confirm the effectiveness of our proposal.