Goto

Collaborating Authors

 Emerson, Tegan


STARS: Sensor-agnostic Transformer Architecture for Remote Sensing

arXiv.org Artificial Intelligence

We present a sensor-agnostic spectral transformer as the basis for spectral foundation models. To that end, we introduce a Universal Spectral Representation (USR) that leverages sensor meta-data, such as sensing kernel specifications and sensing wavelengths, to encode spectra obtained from any spectral instrument into a common representation, such that a single model can ingest data from any sensor. Furthermore, we develop a methodology for pre-training such models in a self-supervised manner using a novel random sensor-augmentation and reconstruction pipeline to learn spectral features independent of the sensing paradigm. We demonstrate that our architecture can learn sensor independent spectral features that generalize effectively to sensors not seen during training. This work sets the stage for training foundation models that can both leverage and be effective for the growing diversity of spectral data.


Generalist Multimodal AI: A Review of Architectures, Challenges and Opportunities

arXiv.org Artificial Intelligence

Multimodal models are expected to be a critical component to future advances in artificial intelligence. This field is starting to grow rapidly with a surge of new design elements motivated by the success of foundation models in natural language processing (NLP) and vision. It is widely hoped that further extending the foundation models to multiple modalities (e.g., text, image, video, sensor, time series, graph, etc.) will ultimately lead to generalist multimodal models, i.e. one model across different data modalities and tasks. However, there is little research that systematically analyzes recent multimodal models (particularly the ones that work beyond text and vision) with respect to the underling architecture proposed. Therefore, this work provides a fresh perspective on generalist multimodal models (GMMs) via a novel architecture and training configuration specific taxonomy. This includes factors such as Unifiability, Modularity, and Adaptability that are pertinent and essential to the wide adoption and application of GMMs. The review further highlights key challenges and prospects for the field and guide the researchers into the new advancements.


Data-Driven Invertible Neural Surrogates of Atmospheric Transmission

arXiv.org Artificial Intelligence

For situations where higher fidelity corrections are required, methods based upon radiative transfer simulations can We present a framework for inferring an atmospheric transmission be used, such as the Fast Line-of-Sight Atmospheric Analysis profile from a spectral scene. This framework leverages of Spectral Hypercubes (FLAASH) [5], which leverages a lightweight, physics-based simulator that is automatically the MODerate resolution atmospheric TRANsmission code tuned - by virtue of autodifferentiation and differentiable (MODTRAN) [6]. Such methods perform best when situational programming - to construct a surrogate atmospheric properties of a spectral scene are known; e.g.


ICML 2023 Topological Deep Learning Challenge : Design and Results

arXiv.org Artificial Intelligence

This paper presents the computational challenge on topological deep learning that was hosted within the ICML 2023 Workshop on Topology and Geometry in Machine Learning. The competition asked participants to provide open-source implementations of topological neural networks from the literature by contributing to the python packages TopoNetX (data processing) and TopoModelX (deep learning). The challenge attracted twenty-eight qualifying submissions in its two-month duration. This paper describes the design of the challenge and summarizes its main findings.


Haldane Bundles: A Dataset for Learning to Predict the Chern Number of Line Bundles on the Torus

arXiv.org Artificial Intelligence

Characteristic classes, which are abstract topological invariants associated with vector bundles, have become an important notion in modern physics with surprising real-world consequences. As a representative example, the incredible properties of topological insulators, which are insulators in their bulk but conductors on their surface, can be completely characterized by a specific characteristic class associated with their electronic band structure, the first Chern class. Given their importance to next generation computing and the computational challenge of calculating them using first-principles approaches, there is a need to develop machine learning approaches to predict the characteristic classes associated with a material system. To aid in this program we introduce the {\emph{Haldane bundle dataset}}, which consists of synthetically generated complex line bundles on the $2$-torus. We envision this dataset, which is not as challenging as noisy and sparsely measured real-world datasets but (as we show) still difficult for off-the-shelf architectures, to be a testing ground for architectures that incorporate the rich topological and geometric priors underlying characteristic classes.


Internal Representations of Vision Models Through the Lens of Frames on Data Manifolds

arXiv.org Artificial Intelligence

While the last five years have seen considerable progress in understanding the internal representations of deep learning models, many questions remain. This is especially true when trying to understand the impact of model design choices, such as model architecture or training algorithm, on hidden representation geometry and dynamics. In this work we present a new approach to studying such representations inspired by the idea of a frame on the tangent bundle of a manifold. Our construction, which we call a neural frame, is formed by assembling a set of vectors representing specific types of perturbations of a data point, for example infinitesimal augmentations, noise perturbations, or perturbations produced by a generative model, and studying how these change as they pass through a network. Using neural frames, we make observations about the way that models process, layer-by-layer, specific modes of variation within a small neighborhood of a datapoint. Our results provide new perspectives on a number of phenomena, such as the manner in which training with augmentation produces model invariance or the proposed trade-off between adversarial training and model generalization.


On the Symmetries of Deep Learning Models and their Internal Representations

arXiv.org Artificial Intelligence

Symmetry is a fundamental tool in the exploration of a broad range of complex systems. In machine learning symmetry has been explored in both models and data. In this paper we seek to connect the symmetries arising from the architecture of a family of models with the symmetries of that family's internal representation of data. We do this by calculating a set of fundamental symmetry groups, which we call the intertwiner groups of the model. We connect intertwiner groups to a model's internal representations of data through a range of experiments that probe similarities between hidden states across models with the same architecture. Our work suggests that the symmetries of a network are propagated into the symmetries in that network's representation of data, providing us with a better understanding of how architecture affects the learning and prediction process. Finally, we speculate that for ReLU networks, the intertwiner groups may provide a justification for the common practice of concentrating model interpretability exploration on the activation basis in hidden layers rather than arbitrary linear combinations thereof.


Parameters, Properties, and Process: Conditional Neural Generation of Realistic SEM Imagery Towards ML-assisted Advanced Manufacturing

arXiv.org Artificial Intelligence

The research and development cycle of advanced manufacturing processes traditionally requires a large investment of time and resources. Experiments can be expensive and are hence conducted on relatively small scales. This poses problems for typically data-hungry machine learning tools which could otherwise expedite the development cycle. We build upon prior work by applying conditional generative adversarial networks (GANs) to scanning electron microscope (SEM) imagery from an emerging manufacturing process, shear assisted processing and extrusion (ShAPE). We generate realistic images conditioned on temper and either experimental parameters or material properties. In doing so, we are able to integrate machine learning into the development cycle, by allowing a user to immediately visualize the microstructure that would arise from particular process parameters or properties. This work forms a technical backbone for a fundamentally new approach for understanding manufacturing processes in the absence of first-principle models. By characterizing microstructure from a topological perspective we are able to evaluate our models' ability to capture the breadth and diversity of experimental scanning electron microscope (SEM) samples. Our method is successful in capturing the visual and general microstructural features arising from the considered process, with analysis highlighting directions to further improve the topological realism of our synthetic imagery.


Do Neural Networks Trained with Topological Features Learn Different Internal Representations?

arXiv.org Artificial Intelligence

There is a growing body of work that leverages features extracted via topological data analysis to train machine learning models. While this field, sometimes known as topological machine learning (TML), has seen some notable successes, an understanding of how the process of learning from topological features differs from the process of learning from raw data is still limited. In this work, we begin to address one component of this larger issue by asking whether a model trained with topological features learns internal representations of data that are fundamentally different than those learned by a model trained with the original raw data. To quantify ``different'', we exploit two popular metrics that can be used to measure the similarity of the hidden representations of data within neural networks, neural stitching and centered kernel alignment. From these we draw a range of conclusions about how training with topological features does and does not change the representations that a model learns. Perhaps unsurprisingly, we find that structurally, the hidden representations of models trained and evaluated on topological features differ substantially compared to those trained and evaluated on the corresponding raw data. On the other hand, our experiments show that in some cases, these representations can be reconciled (at least to the degree required to solve the corresponding task) using a simple affine transformation. We conjecture that this means that neural networks trained on raw data may extract some limited topological features in the process of making predictions.


Differential Property Prediction: A Machine Learning Approach to Experimental Design in Advanced Manufacturing

arXiv.org Artificial Intelligence

Advanced manufacturing techniques have enabled the production of materials with state-of-the-art properties. In many cases however, the development of physics-based models of these techniques lags behind their use in the lab. This means that designing and running experiments proceeds largely via trial and error. This is sub-optimal since experiments are cost-, time-, and labor-intensive. In this work we propose a machine learning framework, differential property classification (DPC), which enables an experimenter to leverage machine learning's unparalleled pattern matching capability to pursue data-driven experimental design. DPC takes two possible experiment parameter sets and outputs a prediction of which will produce a material with a more desirable property specified by the operator. We demonstrate the success of DPC on AA7075 tube manufacturing process and mechanical property data using shear assisted processing and extrusion (ShAPE), a solid phase processing technology. We show that by focusing on the experimenter's need to choose between multiple candidate experimental parameters, we can reframe the challenging regression task of predicting material properties from processing parameters, into a classification task on which machine learning models can achieve good performance.