Eisert, Peter
Permutation Learning with Only N Parameters: From SoftSort to Self-Organizing Gaussians
Barthel, Kai Uwe, Barthel, Florian, Eisert, Peter
Sorting and permutation learning are key concepts in optimization and machine learning, especially when organizing high-dimensional data into meaningful spatial layouts. The Gumbel-Sinkhorn method, while effective, requires N*N parameters to determine a full permutation matrix, making it computationally expensive for large datasets. Low-rank matrix factorization approximations reduce memory requirements to 2MN (with M << N), but they still struggle with very large problems. SoftSort, by providing a continuous relaxation of the argsort operator, allows differentiable 1D sorting, but it faces challenges with multidimensional data and complex permutations. In this paper, we present a novel method for learning permutations using only N parameters, which dramatically reduces storage costs. Our approach builds on SoftSort, but extends it by iteratively shuffling the N indices of the elements to be sorted through a separable learning process. This modification significantly improves sorting quality, especially for multidimensional data and complex optimization criteria, and outperforms pure SoftSort. Our method offers improved memory efficiency and scalability compared to existing approaches, while maintaining high-quality permutation learning. Its dramatically reduced memory requirements make it particularly well-suited for large-scale optimization tasks, such as "Self-Organizing Gaussians", where efficient and scalable permutation learning is critical.
Multi-Resolution Generative Modeling of Human Motion from Limited Data
Moreno-Villamarรญn, David Eduardo, Hilsmann, Anna, Eisert, Peter
We present a generative model that learns to synthesize human motion from limited training sequences. Our framework provides conditional generation and blending across multiple temporal resolutions. The model adeptly captures human motion patterns by integrating skeletal convolution layers and a multi-scale architecture. Our model contains a set of generative and adversarial networks, along with embedding modules, each tailored for generating motions at specific frame rates while exerting control over their content and details. Notably, our approach also extends to the synthesis of co-speech gestures, demonstrating its ability to generate synchronized gestures from speech inputs, even with limited paired data. Through direct synthesis of SMPL pose parameters, our approach avoids test-time adjustments to fit human body meshes. Experimental results showcase our model's ability to achieve extensive coverage of training examples, while generating diverse motions, as indicated by local and global diversity metrics.
Don't Mesh with Me: Generating Constructive Solid Geometry Instead of Meshes by Fine-Tuning a Code-Generation LLM
Mews, Maximilian, Aynetdinov, Ansar, Schiller, Vivian, Eisert, Peter, Akbik, Alan
While recent advancements in machine learning, such as LLMs, are revolutionizing software development and creative industries, they have had minimal impact on engineers designing mechanical parts, which remains largely a manual process. Existing approaches to generate 3D geometry most commonly use meshes as a 3D representation. While meshes are suitable for assets in video games or animations, they lack sufficient precision and adaptability for mechanical engineering purposes. This paper introduces a novel approach for the generation of 3D geometry that generates surface-based Constructive Solid Geometry (CSG) by leveraging a code-generation LLM. First, we create a dataset of 3D mechanical parts represented as code scripts by converting Boundary Representation geometry (BREP) into CSG-based Python scripts. Second, we create annotations in natural language using GPT-4. The resulting dataset is used to fine-tune a code-generation LLM. The fine-tuned LLM can complete geometries based on positional input and natural language in a plausible way, demonstrating geometric understanding.
Synthetic Generation of Dermatoscopic Images with GAN and Closed-Form Factorization
Mekala, Rohan Reddy, Pahde, Frederik, Baur, Simon, Chandrashekar, Sneha, Diep, Madeline, Wenzel, Markus, Wisotzky, Eric L., Yolcu, Galip รmit, Lapuschkin, Sebastian, Ma, Jackie, Eisert, Peter, Lindvall, Mikael, Porter, Adam, Samek, Wojciech
In the realm of dermatological diagnoses, where the analysis of dermatoscopic and microscopic skin lesion images is pivotal for the accurate and early detection of various medical conditions, the costs associated with creating diverse and high-quality annotated datasets have hampered the accuracy and generalizability of machine learning models. We propose an innovative unsupervised augmentation solution that harnesses Generative Adversarial Network (GAN) based models and associated techniques over their latent space to generate controlled "semiautomatically-discovered" semantic variations in dermatoscopic images. We created synthetic images to incorporate the semantic variations and augmented the training data with these images. With this approach, we were able to increase the performance of machine learning models and set a new benchmark amongst non-ensemble based models in skin lesion classification on the HAM10000 dataset; and used the observed analytics and generated models for detailed studies on model explainability, affirming the effectiveness of our solution.
EEG-Features for Generalized Deepfake Detection
Beckmann, Arian, Stephani, Tilman, Klotzsche, Felix, Chen, Yonghao, Hofmann, Simon M., Villringer, Arno, Gaebler, Michael, Nikulin, Vadim, Bosse, Sebastian, Eisert, Peter, Hilsmann, Anna
Since the advent of Deepfakes in digital media, the development of robust and reliable detection mechanism is urgently called for. In this study, we explore a novel approach to Deepfake detection by utilizing electroencephalography (EEG) measured from the neural processing of a human participant who viewed and categorized Deepfake stimuli from the FaceForensics++ datset. These measurements serve as input features to a binary support vector classifier, trained to discriminate between real and manipulated facial images. We examine whether EEG data can inform Deepfake detection and also if it can provide a generalized representation capable of identifying Deepfakes beyond the training domain. Our preliminary results indicate that human neural processing signals can be successfully integrated into Deepfake detection frameworks and hint at the potential for a generalized neural representation of artifacts in computer generated faces. Moreover, our study provides next steps towards the understanding of how digital realism is embedded in the human cognitive system, possibly enabling the development of more realistic digital avatars in the future.
Human-Centered Evaluation of XAI Methods
Dawoud, Karam, Samek, Wojciech, Eisert, Peter, Lapuschkin, Sebastian, Bosse, Sebastian
In the ever-evolving field of Artificial Intelligence, a critical challenge has been to decipher the decision-making processes within the so-called "black boxes" in deep learning. Over recent years, a plethora of methods have emerged, dedicated to explaining decisions across diverse tasks. Particularly in tasks like image classification, these methods typically identify and emphasize the pivotal pixels that most influence a classifier's prediction. Interestingly, this approach mirrors human behavior: when asked to explain our rationale for classifying an image, we often point to the most salient features or aspects. Capitalizing on this parallel, our research embarked on a user-centric study. We sought to objectively measure the interpretability of three leading explanation methods: (1) Prototypical Part Network, (2) Occlusion, and (3) Layer-wise Relevance Propagation. Intriguingly, our results highlight that while the regions spotlighted by these methods can vary widely, they all offer humans a nearly equivalent depth of understanding. This enables users to discern and categorize images efficiently, reinforcing the value of these methods in enhancing AI transparency.
But that's not why: Inference adjustment by interactive prototype revision
Gerstenberger, Michael, Lapuschkin, Sebastian, Eisert, Peter, Bosse, Sebastian
Despite significant advances in machine learning, decision-making of artificial agents is still not perfect and often requires post-hoc human interventions. If the prediction of a model relies on unreasonable factors it is desirable to remove their effect. Deep interactive prototype adjustment enables the user to give hints and correct the model's reasoning. In this paper, we demonstrate that prototypical-part models are well suited for this task as their prediction is based on prototypical image patches that can be interpreted semantically by the user. It shows that even correct classifications can rely on unreasonable prototypes that result from confounding variables in a dataset. Hence, we propose simple yet effective interaction schemes for inference adjustment: The user is consulted interactively to identify faulty prototypes. Non-object prototypes can be removed by prototype masking or a custom mode of deselection training. Interactive prototype rejection allows machine learning na\"{i}ve users to adjust the logic of reasoning without compromising the accuracy.
Unsupervised Learning of Style-Aware Facial Animation from Real Acting Performances
Paier, Wolfgang, Hilsmann, Anna, Eisert, Peter
This paper presents a novel approach for text/speech-driven animation of a photo-realistic head model based on blend-shape geometry, dynamic textures, and neural rendering. Training a VAE for geometry and texture yields a parametric model for accurate capturing and realistic synthesis of facial expressions from a latent feature vector. Our animation method is based on a conditional CNN that transforms text or speech into a sequence of animation parameters. In contrast to previous approaches, our animation model learns disentangling/synthesizing different acting-styles in an unsupervised manner, requiring only phonetic labels that describe the content of training sequences. For realistic real-time rendering, we train a U-Net that refines rasterization-based renderings by computing improved pixel colors and a foreground matte. We compare our framework qualitatively/quantitatively against recent methods for head modeling as well as facial animation and evaluate the perceived rendering/animation quality in a user-study, which indicates large improvements compared to state-of-the-art approaches
Multi-View Mesh Reconstruction with Neural Deferred Shading
Worchel, Markus, Diaz, Rodrigo, Hu, Weiwen, Schreer, Oliver, Feldmann, Ingo, Eisert, Peter
We propose an analysis-by-synthesis method for fast multi-view 3D reconstruction of opaque objects with arbitrary materials and illumination. State-of-the-art methods use both neural surface representations and neural rendering. While flexible, neural surface representations are a significant bottleneck in optimization runtime. Instead, we represent surfaces as triangle meshes and build a differentiable rendering pipeline around triangle rasterization and neural shading. The renderer is used in a gradient descent optimization where both a triangle mesh and a neural shader are jointly optimized to reproduce the multi-view images. We evaluate our method on a public 3D reconstruction dataset and show that it can match the reconstruction accuracy of traditional baselines and neural approaches while surpassing them in optimization runtime. Additionally, we investigate the shader and find that it learns an interpretable representation of appearance, enabling applications such as 3D material editing.
Hyperspectral Demosaicing of Snapshot Camera Images Using Deep Learning
Wisotzky, Eric L., Daudkhane, Charul, Hilsmann, Anna, Eisert, Peter
Spectral imaging technologies have rapidly evolved during the past decades. The recent development of single-camera-one-shot techniques for hyperspectral imaging allows multiple spectral bands to be captured simultaneously (3x3, 4x4 or 5x5 mosaic), opening up a wide range of applications. Examples include intraoperative imaging, agricultural field inspection and food quality assessment. To capture images across a wide spectrum range, i.e. to achieve high spectral resolution, the sensor design sacrifices spatial resolution. With increasing mosaic size, this effect becomes increasingly detrimental. Furthermore, demosaicing is challenging. Without incorporating edge, shape, and object information during interpolation, chromatic artifacts are likely to appear in the obtained images. Recent approaches use neural networks for demosaicing, enabling direct information extraction from image data. However, obtaining training data for these approaches poses a challenge as well. This work proposes a parallel neural network based demosaicing procedure trained on a new ground truth dataset captured in a controlled environment by a hyperspectral snapshot camera with a 4x4 mosaic pattern. The dataset is a combination of real captured scenes with images from publicly available data adapted to the 4x4 mosaic pattern. To obtain real world ground-truth data, we performed multiple camera captures with 1-pixel shifts in order to compose the entire data cube. Experiments show that the proposed network outperforms state-of-art networks.