Eberle, Oliver
Comparing zero-shot self-explanations with human rationales in multilingual text classification
Brandl, Stephanie, Eberle, Oliver
Instruction-tuned LLMs are able to provide an explanation about their output to users by generating self-explanations that do not require gradient computations or the application of possibly complex XAI methods. In this paper, we analyse whether this ability results in a good explanation by evaluating self-explanations in the form of input rationales with respect to their plausibility to humans as well as their faithfulness to models. For this, we apply two text classification tasks: sentiment classification and forced labour detection. Next to English, we further include Danish and Italian translations of the sentiment classification task and compare self-explanations to human annotations for all samples. To allow for direct comparisons, we also compute post-hoc feature attribution, i.e., layer-wise relevance propagation (LRP) and apply this pipeline to 4 LLMs (Llama2, Llama3, Mistral and Mixtral). Our results show that self-explanations align more closely with human annotations compared to LRP, while maintaining a comparable level of faithfulness.
MambaLRP: Explaining Selective State Space Sequence Models
Jafari, Farnoush Rezaei, Montavon, Grégoire, Müller, Klaus-Robert, Eberle, Oliver
Recent sequence modeling approaches using Selective State Space Sequence Models, referred to as Mamba models, have seen a surge of interest. These models allow efficient processing of long sequences in linear time and are rapidly being adopted in a wide range of applications such as language modeling, demonstrating promising performance. To foster their reliable use in real-world scenarios, it is crucial to augment their transparency. Our work bridges this critical gap by bringing explainability, particularly Layer-wise Relevance Propagation (LRP), to the Mamba architecture. Guided by the axiom of relevance conservation, we identify specific components in the Mamba architecture, which cause unfaithful explanations. To remedy this issue, we propose MambaLRP, a novel algorithm within the LRP framework, which ensures a more stable and reliable relevance propagation through these components. Our proposed method is theoretically sound and excels in achieving state-of-the-art explanation performance across a diverse range of models and datasets. Moreover, MambaLRP facilitates a deeper inspection of Mamba architectures, uncovering various biases and evaluating their significance. It also enables the analysis of previous speculations regarding the long-range capabilities of Mamba models.
xMIL: Insightful Explanations for Multiple Instance Learning in Histopathology
Hense, Julius, Idaji, Mina Jamshidi, Eberle, Oliver, Schnake, Thomas, Dippel, Jonas, Ciernik, Laure, Buchstab, Oliver, Mock, Andreas, Klauschen, Frederick, Müller, Klaus-Robert
Multiple instance learning (MIL) is an effective and widely used approach for weakly supervised machine learning. In histopathology, MIL models have achieved remarkable success in tasks like tumor detection, biomarker prediction, and outcome prognostication. However, MIL explanation methods are still lagging behind, as they are limited to small bag sizes or disregard instance interactions. We revisit MIL through the lens of explainable AI (XAI) and introduce xMIL, a refined framework with more general assumptions. We demonstrate how to obtain improved MIL explanations using layer-wise relevance propagation (LRP) and conduct extensive evaluation experiments on three toy settings and four real-world histopathology datasets. Our approach consistently outperforms previous explanation attempts with particularly improved faithfulness scores on challenging biomarker prediction tasks. Finally, we showcase how xMIL explanations enable pathologists to extract insights from MIL models, representing a significant advance for knowledge discovery and model debugging in digital histopathology.
Explaining Text Similarity in Transformer Models
Vasileiou, Alexandros, Eberle, Oliver
As Transformers have become state-of-the-art models for natural language processing (NLP) tasks, the need to understand and explain their predictions is increasingly apparent. Especially in unsupervised applications, such as information retrieval tasks, similarity models built on top of foundation model representations have been widely applied. However, their inner prediction mechanisms have mostly remained opaque. Recent advances in explainable AI have made it possible to mitigate these limitations by leveraging improved explanations for Transformers through layer-wise relevance propagation (LRP). Using BiLRP, an extension developed for computing second-order explanations in bilinear similarity models, we investigate which feature interactions drive similarity in NLP models. We validate the resulting explanations and demonstrate their utility in three corpus-level use cases, analyzing grammatical interactions, multilingual semantics, and biomedical text retrieval. Our findings contribute to a deeper understanding of different semantic similarity tasks and models, highlighting how novel explainable AI methods enable in-depth analyses and corpus-level insights.
Evaluating Webcam-based Gaze Data as an Alternative for Human Rationale Annotations
Brandl, Stephanie, Eberle, Oliver, Ribeiro, Tiago, Søgaard, Anders, Hollenstein, Nora
Rationales in the form of manually annotated input spans usually serve as ground truth when evaluating explainability methods in NLP. They are, however, time-consuming and often biased by the annotation process. In this paper, we debate whether human gaze, in the form of webcam-based eye-tracking recordings, poses a valid alternative when evaluating importance scores. We evaluate the additional information provided by gaze data, such as total reading times, gaze entropy, and decoding accuracy with respect to human rationale annotations. We compare WebQAmGaze, a multilingual dataset for information-seeking QA, with attention and explainability-based importance scores for 4 different multilingual Transformer-based language models (mBERT, distil-mBERT, XLMR, and XLMR-L) and 3 languages (English, Spanish, and German). Our pipeline can easily be applied to other tasks and languages. Our findings suggest that gaze data offers valuable linguistic insights that could be leveraged to infer task difficulty and further show a comparable ranking of explainability methods to that of human rationales.
Insightful analysis of historical sources at scales beyond human capabilities using unsupervised Machine Learning and XAI
Eberle, Oliver, Büttner, Jochen, El-Hajj, Hassan, Montavon, Grégoire, Müller, Klaus-Robert, Valleriani, Matteo
Historical materials are abundant. Yet, piecing together how human knowledge has evolved and spread both diachronically and synchronically remains a challenge that can so far only be very selectively addressed. The vast volume of materials precludes comprehensive studies, given the restricted number of human specialists. However, as large amounts of historical materials are now available in digital form there is a promising opportunity for AI-assisted historical analysis. In this work, we take a pivotal step towards analyzing vast historical corpora by employing innovative machine learning (ML) techniques, enabling in-depth historical insights on a grand scale. Our study centers on the evolution of knowledge within the `Sacrobosco Collection' -- a digitized collection of 359 early modern printed editions of textbooks on astronomy used at European universities between 1472 and 1650 -- roughly 76,000 pages, many of which contain astronomic, computational tables. An ML based analysis of these tables helps to unveil important facets of the spatio-temporal evolution of knowledge and innovation in the field of mathematical astronomy in the period, as taught at European universities.
XAI for Graphs: Explaining Graph Neural Network Predictions by Identifying Relevant Walks
Schnake, Thomas, Eberle, Oliver, Lederer, Jonas, Nakajima, Shinichi, Schütt, Kristof T., Müller, Klaus-Robert, Montavon, Grégoire
Graph Neural Networks (GNNs) are a popular approach for predicting graph structured data. As GNNs tightly entangle the input graph into the neural network structure, common explainable AI (XAI) approaches are not applicable. To a large extent, GNNs have remained black-boxes for the user so far. In this paper, we contribute by proposing a new XAI approach for GNNs. Our approach is derived from high-order Taylor expansions and is able to generate a decomposition of the GNN prediction as a collection of relevant walks on the input graph. We find that these high-order Taylor expansions can be equivalently (and more simply) computed using multiple backpropagation passes from the top layer of the GNN to the first layer. The explanation can then be further robustified and generalized by using layer-wise-relevance propagation (LRP) in place of the standard equations for gradient propagation. Our novel method which we denote as 'GNN-LRP' is tested on scale-free graphs, sentence parsing trees, molecular graphs, and pixel lattices representing images. In each case, it performs stably and accurately, and delivers interesting and novel application insights.