Goto

Collaborating Authors

 Early, Joseph


Inherently Interpretable Time Series Classification via Multiple Instance Learning

arXiv.org Artificial Intelligence

Conventional Time Series Classification (TSC) methods are often black boxes that obscure inherent interpretation of their decision-making processes. In this work, we leverage Multiple Instance Learning (MIL) to overcome this issue, and propose a new framework called MILLET: Multiple Instance Learning for Locally Explainable Time series classification. We apply MILLET to existing deep learning TSC models and show how they become inherently interpretable without compromising (and in some cases, even improving) predictive performance. We evaluate MILLET on 85 UCR TSC datasets and also present a novel synthetic dataset that is specially designed to facilitate interpretability evaluation. On these datasets, we show MILLET produces sparse explanations quickly that are of higher quality than other well-known interpretability methods. Figure 1: Conventional TSC techniques (left) usually only provide class-level predictive probabilities. In addition, our proposed method (MILLET, right) also ...


Inferring Player Location in Sports Matches: Multi-Agent Spatial Imputation from Limited Observations

arXiv.org Artificial Intelligence

Understanding agent behaviour in Multi-Agent Systems (MAS) is an important problem in domains such as autonomous driving, disaster response, and sports analytics. Existing MAS problems typically use uniform timesteps with observations for all agents. In this work, we analyse the problem of agent location imputation, specifically posed in environments with non-uniform timesteps and limited agent observability (~95% missing values). Our approach uses Long Short-Term Memory and Graph Neural Network components to learn temporal and inter-agent patterns to predict the location of all agents at every timestep. We apply this to the domain of football (soccer) by imputing the location of all players in a game from sparse event data (e.g., shots and passes). Our model estimates player locations to within ~6.9m; a ~62% reduction in error from the best performing baseline. This approach facilitates downstream analysis tasks such as player physical metrics, player coverage, and team pitch control. Existing solutions to these tasks often require optical tracking data, which is expensive to obtain and only available to elite clubs. By imputing player locations from easy to obtain event data, we increase the accessibility of downstream tasks.


Reducing catastrophic forgetting when evolving neural networks

arXiv.org Artificial Intelligence

A key stepping stone in the development of an artificial general intelligence (a machine that can perform any task), is the production of agents that can perform multiple tasks at once instead of just one. Unfortunately, canonical methods are very prone to catastrophic forgetting (CF) - the act of overwriting previous knowledge about a task when learning a new task. Recent efforts have developed techniques for overcoming CF in learning systems, but no attempt has been made to apply these new techniques to evolutionary systems. This research presents a novel technique, weight protection, for reducing CF in evolutionary systems by adapting a method from learning systems. It is used in conjunction with other evolutionary approaches for overcoming CF and is shown to be effective at alleviating CF when applied to a suite of reinforcement learning tasks. It is speculated that this work could indicate the potential for a wider application of existing learning-based approaches to evolutionary systems and that evolutionary techniques may be competitive with or better than learning systems when it comes to reducing CF.