Goto

Collaborating Authors

 Duarte, André V.


DIS-CO: Discovering Copyrighted Content in VLMs Training Data

arXiv.org Artificial Intelligence

How can we verify whether copyrighted content was used to train a large vision-language model (VLM) without direct access to its training data? Motivated by the hypothesis that a VLM is able to recognize images from its training corpus, we propose DIS-CO, a novel approach to infer the inclusion of copyrighted content during the model's development. By repeatedly querying a VLM with specific frames from targeted copyrighted material, DIS-CO extracts the content's identity through free-form text completions. To assess its effectiveness, we introduce MovieTection, a benchmark comprising 14,000 frames paired with detailed captions, drawn from films released both before and after a model's training cutoff. Our results show that DIS-CO significantly improves detection performance, nearly doubling the average AUC of the best prior method on models with logits available. Our findings also highlight a broader concern: all tested models appear to have been exposed to some extent to copyrighted content. Our code and data are available at https://github.com/avduarte333/DIS-CO


DE-COP: Detecting Copyrighted Content in Language Models Training Data

arXiv.org Artificial Intelligence

How can we detect if copyrighted content was used in the training process of a language model, considering that the training data is typically undisclosed? We are motivated by the premise that a language model is likely to identify verbatim excerpts from its training text. We propose DE-COP, a method to determine whether a piece of copyrighted content was included in training. DE-COP's core approach is to probe an LLM with multiple-choice questions, whose options include both verbatim text and their paraphrases. We construct BookTection, a benchmark with excerpts from 165 books published prior and subsequent to a model's training cutoff, along with their paraphrases. Our experiments show that DE-COP surpasses the prior best method by 9.6% in detection performance (AUC) on models with logits available. Moreover, DE-COP also achieves an average accuracy of 72% for detecting suspect books on fully black-box models where prior methods give $\approx$ 4% accuracy. Our code and datasets are available at https://github.com/avduarte333/DE-COP_Method


Improving Address Matching using Siamese Transformer Networks

arXiv.org Artificial Intelligence

Matching addresses is a critical task for companies and post offices involved in the processing and delivery of packages. The ramifications of incorrectly delivering a package to the wrong recipient are numerous, ranging from harm to the company's reputation to economic and environmental costs. This research introduces a deep learning-based model designed to increase the efficiency of address matching for Portuguese addresses. The model comprises two parts: (i) a bi-encoder, which is fine-tuned to create meaningful embeddings of Portuguese postal addresses, utilized to retrieve the top 10 likely matches of the un-normalized target address from a normalized database, and (ii) a cross-encoder, which is fine-tuned to accurately rerank the 10 addresses obtained by the bi-encoder. The model has been tested on a real-case scenario of Portuguese addresses and exhibits a high degree of accuracy, exceeding 95% at the door level. When utilized with GPU computations, the inference speed is about 4.5 times quicker than other traditional approaches such as BM25. An implementation of this system in a real-world scenario would substantially increase the effectiveness of the distribution process. Such an implementation is currently under investigation.